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ABSTRACT 

 

I documented populations of Northern Bobwhites (Colinus virginianus) and other priority 

grassland and early successional birds in the Central Hardwoods Bird Conservation 

Region (CHBCR), and determined whether conservation practices have been effective in 

positively impacting species occupancy and abundance. I designed and implemented a 

roadside survey by randomly locating five 15-km routes with 5-min unlimited distance 

point counts (30 counts/route), along secondary roads within Northern Bobwhite focal 

counties (n = 37) in the CHBCR. I also developed a survey to assess roadside biases for 

estimates of relative abundance (a), occupancy (ψ), detection probability (p), and 

associated land-cover for target species. Lastly, I monitored radio-tagged Northern 

Bobwhites to document the effects of spatial, temporal, and behavioral covariates on 

calling rates. I used occupancy estimation in program MARK 6.1 to model factors related 

to occupancy (ψ) and detection probability (p). I used a multi-season robust design 

occupancy module in program MARK 6.1 to model occupancy (ψ) relationships among 

years to conservation practices, colonization (γ), and detection probability (p). I used the 

general multinomial-Poisson mixture model in program R with the unmarked package to 

model species-specific abundance (a) relationships to conservation practices. Estimates of 

relative abundance, occupancy, and detection probability from roadside surveys for nine 

target grassland birds were unaffected by the presence of roads. For every species except 

Prairie Warbler, the addition of conservation covariates to top land-cover models 

improved model fit of occupancy models, though confidence intervals of beta estimates 

overlapped zero for all species except Dickcissel, Field Sparrow and Northern Bobwhite. 

Northern Bobwhite occupancy declined among years by >18% on survey points and 
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declined by >4% in 2009 if a conservation practice was <2 km away from the survey 

point. Species occupancy and abundance were most strongly related to land-cover 

covariates, with the presence or amount of conservation at a point of secondary 

importance.  These models can be used to prioritize conservation efforts in the CHBCR 

by focusing land-cover modeled relationships for occupancy and abundance on existing 

conservation points to optimize likelihood of increased species occupancy and 

abundance. 
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INTRODUCTION  

An important component of effectively developing and implementing avian conservation 

strategies is understanding how conservation practices are linked to species occupancy and 

abundance. If current conservation strategies are going to continue to garner financial support, 

then definitive evidence of their positive effects on avian populations across a broad region is 

required. However, if current conservation strategies are ineffective, then alternative strategies 

should be identified for improving implementation and effectiveness.       

For North American grassland and early-successional bird species, habitat loss is an 

important factor contributing to many species population declines. As a result, many federal 

conservation programs and practices are used to restore or manage existing grassland and early 

successional habitat. Conservation practices can positively affect local species densities and 

abundances, though measured responses are species and practice specific. Also, analyses 

utilizing coarse data showed increasing species population trends associated with increasing 

amounts of conservation. However, there is a need to relate the cumulative effect of conservation 

practices to large-extent species population parameters such as occupancy and abundance. 

Models can be developed using expert opinion, or rigorous data collected with an explicit 

design can be used to statistically model species distributions. Hierarchical modeling techniques 

are powerful statistically rigorous tools which can use generalized linear models and include 

explanatory covariates. Inferences about distributional processes such as occupancy and 

abundance are derived from data collected by researchers, though distributional relationships to 

explanatory variables can be confounded by factors affecting the observational data. Thus, 

hierarchical models that explicitly and simultaneously account for variables influencing a 

process of interest while accounting for variability in the observational data will generate more 
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accurate estimates of population parameters. Population-level inferences at a large-extent 

utilizing fine-grain data are most useful for conservation planning, and to determine species 

specific conservation impacts. These data can be difficult, time-consuming, and expensive to 

collect unless convenient surveys are implemented. Therefore, assessment of potential biases 

associated with conveniently collected data will provide a measure of confidence about 

conveniently collected data. 

 In Chapter I, my goal was to assess how different variables potentially affect breeding 

Northern Bobwhite (Colinus virginianus) detection probabilities to provide guidance for 

managers for optimizing survey efforts with respect to these important factors in the Central 

Hardwoods Bird Conservation Region (CHBCR). Detection probability (p) is the product (p = pp 

x pa x pd) of the probability that an individual is present at the sampled location (pp), available 

(pa) for detection (i.e., calling, visible, etc.), and actually detected by an observer during a 

specified survey (pd). My first objective was to determine if Northern Bobwhite availability for 

detection (pa) was affected by time of the day, day of the breeding season, or conspecific calling, 

by documenting detectability using radio-marked birds. My second objective was to evaluate 

roadside survey bias in detection (pd, pa, pp) and occupancy (ψ) estimates by comparing on-road 

versus off-road surveys. My third objective was to develop and assess the efficacy of a roadside-

based removal survey method (pd, pa) for monitoring Northern Bobwhite breeding populations 

while incorporating important explanatory variables as per the results from the first 2 objectives. 

Lastly, I combined the results from each of the detection components to generate a 

comprehensive Northern Bobwhite abundance adjustment table based on detection probability 

differences under varying survey conditions.  
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 In Chapter II, my goal was to further develop the second objective from Chapter I to 

assess potential roadside biases for occupancy (ψ) and detection probability (p) of a suite of high 

priority grassland and early successional passerine bird species in the CHBCR. I used a roadside 

versus off-road survey design to determine if relative abundance, occupancy, and detection 

probability of high priority grassland and early successional species in the CHBCR would be 

lower on roadside survey points, when compared to off-road survey points. I also hypothesized 

that occupancy would be affected by changes in land-cover among on- and off-road points.    

 In Chapter III, my goal was to use a fine-grain, large extent roadside-based survey design 

to evaluate the relationship between grassland and early-successional bird distribution and 

abundance, and National Resources Conservation Service practices in the CHBCR. My 

objectives were to 1) determine if the presence, amount, or distance to a practice at a survey 

point was related to species occupancy, 2) determine if the presence, amount, or distance to a 

practice at a survey point was related to species abundance, and 3) determine the relative 

importance of conservation practices in explaining avian distribution and abundance when 

modeled in conjunction with other landscape covariates in the CHBCR.   
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CHAPTER I 

FACTORS AFFECTING NORTHERN BOBWHITE BREEDING SEASON DETECTION 

PROBABILITIES  
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ABSTRACT  

Northern Bobwhite (Colinus virginianus) populations declined by 6.3% annually from 2001-

2011 in the Central Hardwoods Bird Conservation Region. Monitoring Northern Bobwhite 

populations and developing accurate population estimates is an important component of the 

National Bobwhite Conservation Initiative. My goal was to provide guidance for managers on 

how to effectively survey Northern Bobwhite breeding populations. I monitored radio-tagged 

Northern Bobwhites to document calling rates by minutes-since-sunrise, day-of-year, and by 

influence of calling conspecifics. I designed and implemented a roadside survey by randomly 

locating five 15-km routes with 5-min unlimited distance point counts (30 counts/route), along 

secondary roads within Northern Bobwhite focal counties (n = 37) in the Central Hardwoods 

region. I conducted roadside and off-road point counts to assess roadside detection probability 

and occupancy bias. I used occupancy estimation in program MARK to model radio-tagged 

Northern Bobwhite calling availability and off-road detection probabilities and occupancy. I 

modeled roadside detection probabilities using Huggins closed-capture module in program 

MARK. I estimated an effective detection radius using program DISTANCE. Northern Bobwhite 

calling availability was affected by daily and seasonal temporal variables as well as abundance of 

conspecifics calling. Northern Bobwhite availability for detection differed between years, 

declined by 50% 4 hr after sunrise, and peaked when at least 4 other males were calling in the 

area. Based on n = 8,220 Northern Bobwhite detections in the roadside removal analysis, the key 

covariates related to detection were observer, distance (m) from the observer, and minutes-since-

sunrise when a count was conducted. Detection probability by the best observer was 40% greater 

than detection by the poorest observer. Northern Bobwhite detection probability and occupancy 

were unrelated to whether counts were conducted on roadsides or off-road. Point occupancy on 
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off-road surveys was 1, and Northern Bobwhite detection probability during the second visit 

(0.51, SE = 0.08) was 11% greater than the first and third visits (n = 270 points). Breeding 

surveys for Northern Bobwhite in the Central Hardwoods region can be roadside-based, should 

begin at sunrise and end at four hours after sunrise, should occur during peak calling period (1 

June-1 July), and should account for differences in observer detection as well as the influence of 

conspecifics on Northern Bobwhite calling availability. 

INTRODUCTION 

The National Bobwhite Conservation Initiative (NBCI) was established in 2002 to implement 

species-specific conservation practices to meet a population recovery goal for the Northern 

Bobwhite (Colinus virginianus; Dimmick et al. 2002). Since, many state, federal, and private 

landowners have managed habitat to increase Northern Bobwhite populations throughout their 

range (Dimmick et al. 2002, Morgan 2008, Dailey et al. 2011). Managing Northern Bobwhite 

habitat can positively affect local populations (Brennan 1991, Dimmick et al. 2002, Morgan 

2008), but evidence is lacking on the effectiveness of such management at broader population 

scales. Quantifying these regional management effects on Northern Bobwhite populations is 

difficult because currently the only breeding bird survey of large spatial extent is the North 

American Breeding Bird Survey (BBS). BBS is useful for documenting range-wide or statewide 

trends but loses resolution at finer spatial scales (Link and Sauer 1998, Sauer and Link 2011). 

Monitoring is necessary for tracking changes in populations through time and assessing effects 

of management (Hansen and Guthery 2001, Rusk et al. 2007, Murray et al. 2011). Passive 

monitoring strategies are typically either fall covey counts, (Wellendorf et al. 2004, Rusk et al. 

2007, Riddle et al. 2008) or counts during the breeding season (Riddle et al. 2010, Murray et al. 

2011, Duren et al. 2012). Breeding season call counts provide an index of breeding populations, 
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but do not quantify reproductive success for a given year (Hansen and Guthery 2001, Riddle et 

al. 2010, Murray et al. 2011). Raw count data can be used to generate indices of relative 

abundance, or count data can be adjusted for various components of detection and survey area to 

estimate density.     

An important component of contemporary monitoring strategies is adjusting raw count 

data for variability in detectability based on a variety of covariates (Riddle et al. 2010, Murray et 

al. 2011). Counted individuals do not necessarily represent a constant proportion of the 

population through space and time (MacKenzie 2005, Kissling and Garton 2006) thus, detection 

probabilities are needed to improve the accuracy of population parameter estimates, and should 

be incorporated into regional Northern Bobwhite population monitoring (Thompson 2002, 

Norvell et al. 2003, Diefenbach et al. 2007, Marques et al. 2007). Previous research has 

evaluated detection methods separately and simultaneously for Northern Bobwhite breeding 

season counts using double-observer, time-to-detection, removal models, and distance sampling, 

but estimates were either derived via localized surveys or rarely included spatial and behavioral 

covariates in models (Terhune 2009, Riddle et al. 2010, Murray et al. 2011). In addition, none of 

these previous studies have directly accounted for variability in Northern Bobwhite calling 

availability by including covariates, which can have a greater effect on monitoring results than 

observer effects (Riddle et al. 2010). There is a peak in Northern Bobwhite detection from June-

July, and roadside surveys could bias counts because of a potential for road attraction or 

avoidance, and observer-induced behavioral changes (Terhune 2009, Murray et al. 2011). 

Although roadside surveys are commonly used because of their convenience, information about 

differences in Northern Bobwhite detection probability between on- and off-road surveys is 

largely lacking.  



 

8 

 

Detectability (p) is the product of three major components (p = pp x pa x pd): the 

probability that an individual bird associated with the sample area is available (i.e., calling, 

visible, etc.) during the count (pa), given it is present (pp), and the probability it is detected by an 

observer given it is available and present (pd) (Riddle et al. 2010). Distance sampling methods 

(Buckland 2001) generate estimates of pd, removal sampling (Farnsworth et al. 2002) and time-

of-detection (Alldredge et al. 2007) methods estimate pd and pa, and repeat survey sampling 

methods estimate pd, pa, and pp (MacKenzie et al. 2002). I assessed the influence of spatial, 

temporal, and behavioral variables on detection probability estimates of Northern Bobwhite 

using a combination of these methods.   

However, there is no comprehensive evaluation of factors affecting Northern Bobwhite 

breeding season detection probabilities. Existing research is piece-meal, incomplete, and does 

not provide useful information for future Northern Bobwhite monitoring designs. To address this 

glaring need, I used three novel approaches to: determine how Northern Bobwhite availability 

was related to temporal and behavioral variables, determine if roadside-based Northern Bobwhite 

detection probability and occupancy are biased, and determine the efficacy of a fine-grain large-

extent survey for breeding Northern Bobwhite in the Central Hardwoods Bird Conservation 

Region (CHBCR).   

My goal was to provide guidance for managers for optimizing survey efforts for Northern 

Bobwhite with respect to efficiency by identifying and incorporating factors affecting detection 

probability. My first objective was to determine if Northern Bobwhite availability for detection 

(pa) was affected by time of the day, day of the breeding season, or conspecific calling, by 

documenting detectability using radio-marked birds. My second objective was to evaluate 

roadside survey bias in detection (pd, pa, pp) and occupancy (ψ) estimates by conducting off-road 
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surveys in an occupancy modeling framework while also accounting for land cover heterogeneity 

with covariates. My third objective was to develop and assess the efficacy of a roadside-based 

removal survey method for monitoring Northern Bobwhite breeding populations. Specifically, I 

wanted to assess differences in Northern Bobwhite detection (pd) given availability (pa) from a 

large extent, fine grain survey, with respect to observer and point-specific spatial variables in the 

CHBCR. Lastly, I combined significant explanatory variables from each approach to create an 

overall breeding season detection probability model for Northern Bobwhite.    

STUDY AREA 

Radio-telemetry and Off-road Point Count Surveys  

I conducted radio-telemetry surveys and off-road surveys on Peabody Wildlife Management 

Area (PWMA), and additional off-road surveys on Fort Campbell Military Reservation, TN-KY 

and on private lands in Livingston County, KY. PWMA is an 18,854-ha reclaimed surface mine 

managed by Kentucky Department of Fish and Wildlife Resources (KDFWR) located in Ohio, 

Muhlenberg, and Hopkins counties, KY. Herbaceous cover established during reclamation was 

dominated by Sericea lespedeza, but also included big bluestem (Andropogon gerardii), little 

bluestem (Schizachyrium scoparium), indiangrass (Sorghastrum nutans), and switchgrass 

(Panicum virgatum). My focal area for surveys was a 3,321-ha unit comprised predominantly of 

mixed deciduous forest, open herbaceous, native warm-season grass, and scrub/shrub cover 

types. 

Fort Campbell Military Reservation (FCMR) is a 41,842-ha U.S. Department of Defense 

(DoD) installation located on the Tennessee-Kentucky border. Topography is flat to gently 

rolling with open oak woodlands, planted pines, leased agricultural fields, and managed 

grasslands. I conducted my surveys in grasslands that ranged in size from 73 – 570 ha. 
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 The private lands in Livingston County were planted to native warm-season grasses and 

were part of a Northern Bobwhite focus area developed by KDFWR (Morgan 2008). The total 

focal area is 12,860 ha, and I surveyed a subset of fields which ranged from 25 – 450 ha 

comprising 3.5% of the focal area. 

Roadside Point Count Surveys 

I conducted roadside point-count surveys in seven states throughout the CHBCR (Figure 1.1, all 

of the figures and tables are included in the appendix).  The Central Hardwoods was historically 

characterized by open tall grass prairie intermixed with oak (Quercus spp.) and pine (Pinus spp.) 

woodlands (Nuzzo 1985). CHBCR encompasses 29,815,052 ha across portions of 10 central and 

mid-south states. More than 50% of the land has been converted to non-native grass pasture and 

hay production, typically tall fescue (Schedonorus arundinaceus), or planted to crops including 

corn (Zea mays), soybeans (Glycine max), sorghum (Sorghum bicolor), and wheat or oats 

(Triticum aestivum and Avena sativa; Dimmick et al. 2002).  

 My monitoring approach was based on surveying focal counties. Focal regions were 

originally identified from a Northern Bobwhite habitat potential model (Burger and Evans 2009). 

Focal areas were further defined during state workshops as part of the NBCI plan revision  

(Burger and Evans 2009). I selected eight counties per state, unless the extent of the CHBCR 

region in a state was limited. These focal counties represent the best regions for Northern 

Bobwhite restoration, as defined by biologists and managers that participated in each state’s 

NBCI workshop.  These focal areas were identified because of their existing Northern Bobwhite 

populations, were conducive for Northern Bobwhite restoration or both. 
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METHODS 

Radio-telemetry Point Count Surveys 

I used telemetry surveys conducted on PWMA in 2010 and 2011to document male calling rates, 

availability for aural detection by point counts, and effects of temporal, spatial and behavioral 

covariates. I randomly selected a male for location and observation from a sample of >50 male 

Northern Bobwhites radio-tagged as part of an ongoing telemetry study at PWMA (Tanner 

2012). I located the observation point by homing to within 50 m of the target male. Once the 

observation point was established, I waited 1 min to allow for the potential disturbance of my 

arrival to subside, and to generally note locations of adjacent calling males. After the 1-min wait 

period ended, I used a time-of-detection survey (Alldredge et al. 2007) by recording the calling 

behavior of the target (telemetry-located) radio-collared male and adjacent males for ten 1-min 

segments. I recorded the number of times each individual radio-collared male called in each 

interval. After the 5th minute, I relocated the target male to confirm the correct male was being 

monitored before resuming the call counts for the remaining 5 minutes. I noted the location and 

calling rates of adjacent male Northern Bobwhites within audible range throughout the survey. I 

confirmed the final location of the target male and recorded the distance of the individual from 

the survey point when the survey was completed. I conducted surveys during all times of the day 

(sunrise until 17:07) from 3 May – 1 Aug 2010 and 2011. I recorded the date of the survey, time-

of-day, and the method by which the individual was detected (aurally or visually). 

 I surveyed 287 points associated with 63 radio-collared males in 2010 and 2011. The 

mean number of point counts associated with each male was 4.43 (SE = 0.39), and I considered 

each point count as an independent event because they were recorded on separate days for any 

given male. 
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Off-road Point Count Surveys 

I conducted >90% of off-road surveys on PWMA and FCMR in 2010 (1 other technician 

conducted the other 10%), and all of the surveys on PWMA and in Livingston County, KY in 

2011. I located survey transects 300 m apart along a secondary road, and extended transects 

perpendicularly for 600 m away from the road. To avoid repeat detections of individuals, and 

spatial autocorrelation (Hutto et al. 1986, Fletcher and Koford 2002, Alldredge et al. 2006), I 

positioned 3 points on each transect located on the road, 300 m away from the road and 600 m 

away from the road. At each point I conducted a 100-m fixed-radius point count listening for and 

recording all individuals aurally or visually detected, within 5 minutes, constraining observations 

to within 100 m. I placed individuals in distance bands using a range finder ranging from: 0–25 

m, 26–50 m, 51–75 m, 76–100 m. I surveyed each transect three times throughout the season to 

determine seasonal variation in detection and occupancy. Subsequent counts were separated by 

approximately 2-week intervals.  I surveyed a total of 270 points on 90 off-road transects on 3 

sites from 2010–2011. 

Roadside Point Count Surveys 

In 2008, 4 observers surveyed 121 routes in 25 counties in 4 states (IN, IL, KY, and TN; Figure 

1.1). In 2009, 2 observers surveyed 60 routes in 12 counties in 3 states (AR, MO and OK; Figure 

1.1). In 2010, 5 observers surveyed 181 routes in 37 counties in 7 states (AR, IN, IL, KY, MO, 

OK and TN). In 2011, 4 observers surveyed 146 routes in 23 counties in 5 states (IN, IL, KY, 

MO, and TN).  In 2012, 5 observers surveyed 181 routes in 37 counties in 7 states (AR, IN, IL, 

KY, MO, OK and TN). Surveys were not conducted in MS, AL, and OH because those states 

had very limited area in the CHBCR.   
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I randomly located five 24.1-km routes along rural, secondary roads that crossed non-

forested areas within each of the focal counties. To determine route starting locations, I overlaid 

a 9.65 × 9.65 km grid onto each county map. I randomly selected 5 blocks to be surveyed. If the 

selected block had >50% open land and sufficient room to locate a 24.1-km route (i.e., not 

covered by urban areas, forest, or water), the route was established. If a given block did not meet 

these criteria, I selected another. If a given block was suitable, I selected a starting point within 

1.6 km of the northeast corner on a secondary road and traced a route around the block on 

secondary roads which remained primarily in open, undeveloped areas.     

I placed point count stations ≥ 805 m apart along each route. Each route had 30 point 

count stations and was surveyed once per breeding season between 15 May and 15 July 2008–

2012, covering the majority of the Northern Bobwhite breeding season. Routes were not 

surveyed consecutively within a county, but instead were visited rotationally throughout the 

course of the season so routes within a county were not temporally biased by consecutive visits. I 

conducted a 5-min, 500-m radius point count at each point, recording all Northern Bobwhite 

individuals encountered (aurally or visually). I considered each minute as a separate interval, and 

I assigned the individual to the minute interval it was initially detected. Northern Bobwhite are 

detectible up to 500 m (Stokes 1967); thus, I placed individuals in distance bands using a range 

finder: 0–25 m, 26–50 m, 51–75 m, 76–100 m, 101–250 m and 251–500 m. I surveyed routes 

beginning ≤30 min before sunrise, and continued until the route was completed, approximately 4 

hr after sunrise. Different observers conducted surveys each year, though one observer surveyed 

for 2 years (2009–2010). I trained all observers in survey methodology for 5 days, including 

distance estimation, prior to initiation of surveys each year.  
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Vegetation Sampling Procedures 

I visually estimated the percent cover of major land cover types at each on- and off-road point 

within a 100-m radius of the point center (Table 1.1) to include major land cover covariate 

influences for occupancy and detection probability models. I chose a 100-m radius to match the 

fixed-radius point count distance of off-road survey methodologies, and because observers had 

difficulty classifying cover types beyond 100 m.    

Analyses 

     Radio-telemetry surveys.--I estimated detection probabilities (pa) from the Occupancy module 

in program MARK 6.1 (White and Burnham 1999) and used Akaike’s Information Criterion 

(AIC) for model selection. I considered models with a ∆AICc ≤2 most influential in explaining 

variability. I assumed a constant occupancy of 1 because I definitively located individuals at 

each point via radio telemetry, and my objective was to evaluate detection probabilities. I 

assumed equal detection probability between one-minute intervals because intervals were equal 

in duration (Otis et al. 1978, Farnsworth et al. 2002). I used the Delta method to calculate period 

detection probabilities and Taylor series expansion to calculate standard errors (Williams et al. 

2002). Though the count was conducted over a 10-min period, I used the encounter history 

during the first 5 min so analyses and results were comparable to my other methods. Detection 

probability for this analysis directly estimates the probability of availability for the radio-collared 

individual to call during a 5-min count (pa).  I knew the individual was present (pp = 1) via radio 

telemetry and I assumed the observer would detect the individual if it called (pd = 1) because of 

the proximity (<50 m) of the observer to the focal bird. I grouped surveys based on Year 

(temporal) and included minutes-since-sunrise (MSS, temporal), day-of-year (DOY, temporal) 

and the number of other Northern Bobwhites calling (behavioral) at the time of the survey 
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(ABUN) as covariates. I quantified MSS based on a 24-hr period, and then determined the 

difference in minutes between daily sunrise and the survey start time. I quantified DOY by 

converting the actual dates to numeric values using the first sampling day for either year (3 May 

2010) as the start value of 0. I re-scaled covariates in  quadratic models by dividing MSS by 

1,000, DOY by 100, and ABUN by 10 (Cooch and White 2009). I did not include observer 

effects because I presumed trained observers located target birds with telemetry and detected 

their calls, and detected the calls of adjacent birds with similar proficiency. I developed a suite of 

17 a priori models based on my specific objectives (Table 1.2). I included additive quadratic 

models for each of the covariates and all combinations of the covariates. I included quadratic 

models because I suspected non-linear covariate relationships. To limit the total number of 

models evaluated, I did not include any models with interaction terms, and instead focused on 

additive effects.  I present parameter estimates based on the mean covariate values for the most 

parsimonious models.      

Assumptions associated with time-of-detection models include: 1) closed populations for 

the duration of the count, and 2) individuals are only counted once during the count, (Huggins 

1989, Alldredge et al. 2007). Radio-telemetry results suggested that Northern Bobwhites, on 

average, did not move significant distances (<7 m) during a 5-min count, and I relocated 

individuals immediately following each count to ensure monitoring of the target individual.  

     Off-road surveys. —I estimated detection probabilities and site occupancy from the Royle-

Nichols Repeated Count Data (Royle Biometrics) module in program PRESENCE 5.7 (Royle 

and Nichols 2003, Hines 2006). I used AIC for model selection; models with a ∆AICc ≤2 were 

considered most influential in explaining variability. The real parameters of the Royle-Nichols 

Repeated Count Data (Royle Biometrics) module are r (animal-specific detection probability) 



 

16 

 

and λ (Poisson intensity parameter), and conditional detection probability (p) and occupancy (ψ) 

are derived parameters (Royle and Nichols 2003). I used parameter estimates that conditioned 

detection on occupancy to generate overall detection probability estimates (Royle and Nichols 

2003). I grouped surveys based on year (Year, temporal) and distance from road (DFR, spatial) 

to evaluate year and distance from road effects on detection probability. I also generated  

visit-specific detection probabilities to account for within-season temporal variation of detection 

(Visit, temporal). The first visit occurred from 19 May–3 June, the second from 1 June–25 June, 

and the third from 25 June–11 July. I did not include observer effects for detection probability, 

because >90% of point counts were conducted by one observer. I included distance from road 

(DFR, spatial) and year (Year, temporal) effects on occupancy. Additionally, I modeled 

heterogeneity in land cover on points by including percent land cover for 5 dominant cover types 

(cool-season grass [CG], forest [FO], grass mixture [GM], native warm-season grass [NG], and 

scrub-shrub [SC]; Table 1.1) that could positively or negatively influence Northern Bobwhite 

occupancy. I developed a suite of 18 a priori models based on my objectives (Table 1.3). Rather 

than include every potential combination of covariates for detection probability (p) and 

occupancy (ψ), I modeled variables influencing the parameter for occupancy (ψ) first, while 

holding detection probability (p) constant. I then improved the best model explaining occupancy 

(ψ) by including covariates to model detection probability (p). Because I was explicitly 

interested in DFR effects, I included all potential DFR models (Table 1.3). I limited the total 

number of models considered by not including any models with interaction terms. I present 

parameter estimates based on the mean covariate values for the most parsimonious models.  

Assumptions associated with occupancy modeling include: 1) closed populations for the 

duration of the surveys, 2) individuals are never falsely detected at a site when absent, and may 
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or may not be detected when they are present, and 3) detection of an individual at a site is 

independent of detection of individuals at other sites (MacKenzie et al. 2002, MacKenzie et al. 

2003). I minimized immigration and emigration by surveying within a two-month window 

during the peak breeding season. I considered my population of interest largely closed because 

Northern Bobwhite typically moved <200 m in a breeding season on my study area (Unger et al. 

2012), and point centers were 300 m apart. Only two experienced observers conducted the 

surveys to minimize false detections. My overall fixed-radius point counts were separated by 100 

m, minimizing the possibility of movement of individuals among points, providing spatial 

independence. 

     Roadside surveys. —I estimated detection probabilities (pd, pa) from the Huggins Closed 

Capture module in program MARK 6.1 (White and Burnham 1999, Farnsworth et al. 2002). I 

used AIC for model selection (Anderson 2008). I considered models with a ∆AICc ≤2 most 

influential in explaining variability. I only included survey points in which a Northern Bobwhite 

was detected (pp = 1). I used a dummy variable to code for and group surveys based on observer 

so I could evaluate observer (behavioral) or year (temporal) effects on detection. I assumed equal 

detection probability among 1-min intervals because intervals were equal in duration (Otis et al. 

1978, Farnsworth et al. 2002). I included 4 covariates: distance (m) from the observer (DFO, 

spatial), percent forest and woodland cover (Table 1.1) within a 100-m radius of the point count 

(COV, spatial), whether the route was east or west of the Mississippi River (EW, spatial), and 

minutes-since-sunrise (MSS, temporal). I chose percent forest cover within 100 m because 

forested areas are less likely to have populations of Northern Bobwhite, and trees can impede 

sound transmission and affect detection. I did not include other land-cover covariates because I 

had no reason to expect that their structure would affect Northern Bobwhite calling sounds. I 



 

18 

 

chose the EW covariate to test for spatial autocorrelation among points, accounting for broad 

ecological relationships. I included the MSS covariate to maintain consistency with radio-

telemetry survey models. I did not include abundance because inclusion of abundance directly 

confounded estimates of detection by inflating the probability that any individual is detected at a 

point by an observer (pd), simply because there are more birds at a point (McCarthy et al. 2012). 

To directly assess the effects of conspecifics on detection probability encounter histories specific 

to individuals, similar to the radio-telemetry surveys, are required. I developed a suite of 21 a 

priori models (Table 1.4), which included every combination of covariates with observer and 

year as grouping variables, and a null model that assumed constant detection probability. I set the 

recapture probabilities to zero for all of the models to properly estimate detection probabilities as 

a removal model (Cooch and White 2009). As above, I only considered models with additive 

effects and present parameter estimates based on the mean covariate values for the most 

parsimonious model(s).    

Assumptions associated with removal models include: 1) the population is closed during 

the time of the survey, 2) individuals are accurately identified, recorded, and not double-counted 

at a single point, and 3) individuals have an equal probability of being detected; there is no 

individual heterogeneity of calling rates (Zippin 1956, Farnsworth et al. 2002). Based on the 

telemetry data, individuals were unlikely to move outside of my survey radius during 5-min 

point counts. Reduced movement also minimized potential for double-counting. I included 

covariates in my model to account for heterogeneity.        

     Distance. —I calculated an effective detection radius and pd in Program DISTANCE 6.0 

(Thomas et al. 2010). I grouped observations based on distance band categories described above. 

I used AIC for model selection; models with a ∆AICc ≤2 were considered most influential in 
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explaining variability. I analyzed 4 combinations of key functions and series expansions (hazard-

rate with cosine, uniform with cosine, uniform with simple polynomial, half-normal with hermite 

polynomial) that have been recommended for point-count analyses (Buckland 2001). 

Assumptions associated with distance sampling include: 1) individuals located directly at 

the point of interest are counted, 2) individuals do not move in response to the surveyor, 3) 

individuals are accurately placed in distance bands, and 4) individuals in the spatial area of 

interest are randomly distributed (Buckland 2001). Radio-telemetry data suggested that 

individuals do not move in response to surveyors, or appreciably during a 5-min survey; thus, 

individuals located at a point were likely counted. I used a range-finder to ensure accuracy of 

distance band placement. For any surveying scheme, a key statistical assumption is the random 

distribution of samples. I accounted for this assumption by randomly placing starting points of 

routes and following roads in a random fashion through the landscape. There is always the 

potential for clumping individuals and biasing population parameter estimates. I also 

incorporated land-cover covariates to potentially explain any evidence of clumping based on 

spatial land-cover components.   

RESULTS 

Radio-telemetry Surveys 

In 2010, 5 observers detected 341 unmarked Northern Bobwhite males associated with 

monitoring 53 radio-collared males, and in 2011, 6 observers detected 432 unmarked Northern 

Bobwhite males associated with monitoring 53 radio-collared males. The mean number of point 

counts associated with each male was 4.43 (SE = 0.39) Radio-collared males called on 87 of 287 

points surveyed (30.0%) during the first 5-min interval. The furthest distance a radio-collared 

male moved during the 5-min survey period was 60 m (x  = 6.2 m, SE, = 0.61, n = 287).  Only 
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one model for detection probability met the ∆AICc ≤2 criterion; this model included Year, 

ABUN and MSS and had strong support (AICc weight = 0.88, Table 1.2). Detectability from the 

top model was quadratically influenced by ABUN (β1 = 10.91, SE = 1.51, 7.95 ≤ β1 ≤ 13.87; β2 = 

-13.85, SE = 2.88, -19.50 ≤ β2 ≤ -8.19; Figure 1.2) and by MSS (β3 = -7.44, SE = 1.97, -11.30 ≤ 

β3 ≤ -3.57; β4 = 7.52, SE = 3.30, 1.04 ≤ β4 ≤ 14.00; Figure 1.3).   

Based on the top model and mean covariate values (ABUN [x = 0.18, SE = 0.01] and 

MSS [x = 0.215, SE = 0.07, n = 287], detection probability (pa) for a single one-minute interval 

in 2010 was 0.30 (SE = 0.024, 95% CI = 0.25 ≤ p ≤ 0.35), and in 2011 was 0.10 (SE = 0.015, 

95% CI = 0.08 ≤ p ≤ 0.13). Detection probability for the full 5-min point count in 2010 was 0.97 

(SE = 0.03) and in 2011 was 0.66 (SE = 0.05).  

Off-road Surveys 

In 2010, two observers detected 349 Northern Bobwhites and in 2011, one observer detected 288 

Northern Bobwhites during off-road surveys. One model met my selection criterion of ∆AICc ≤2 

among my set of candidate models and included visit as a group variable for detection 

probability, and FO and NG covariates affecting occupancy (AICc Weight = 0.5189, Table 1.3). 

Based on the top model, I used the mean covariate value of FO (x = 0.05, SE = 0.13, n = 270) 

and NG (x = 0.06, SE = 0.15, n = 270) to generate occupancy parameter estimates. Detection 

probability (pp, pa, pd) was greater during the second visit than the first and third visits (β T1 = 

0.06, SE = 0.11, -0.15 ≤ β T1 ≤ 0.27; β T2 = 0.28, SE = 0.10, 0.08 ≤ β T2 ≤ 48; β T3 = -2.15, SE = 

0.36, -2.85 ≤ -1.03). Detection probability given occupancy for the first visit was 0.45 (SE = 

0.08, 95% CI = 0.30 ≤ p ≤ 0.61), for the second visit was 0.51 (SE = 0.08, 95% CI = 0.35 ≤ p ≤ 

0.67), and for the third visit was 0.43 (SE = 0.08, 95% CI = 0.28 ≤  p ≤ 0.59). The overall 

probability of an individual being heard after 3 visits was 0.85 (SE = 0.05). Occupancy was 
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positively related to NG (β = 0.54, SE = 0.25, 0.05 ≤ β ≤ 1.03) and negatively related to FO (β = 

-0.87, SE = 0.39, -1.62 ≤ β ≤ -0.11). Inclusion of DFR in either the detection or occupancy 

components of the models did not yield better supported models (lower AICc values; Table 1.3).    

Roadside Surveys 

Greater than 94% of the survey routes had at least one Northern Bobwhite detection. Across all 

points and routes, observers detected 1,524, 874, 1,635, 2,090, and 2,278 Northern Bobwhites in 

2008-2012, respectively. I used 8,220 of the detections for the removal analysis; 181 detections 

were omitted because of missing data. The number of Northern Bobwhite detections differed 

among observers, ranging from 139-872.  

Three models for detection probability met my criterion for evaluation with ∆AICc ≤2 

(Table 1.4). The best-supported model included differences in observer detection probabilities 

and DFO, MSS, and COV covariates. The top model had a 36% (AICc weight = 0.361) 

probability of being the best model among the set of candidate models and the relative likelihood 

of the model given the data and other candidate models was 1.00. Detection probability was 

negatively related to DFO (β = -0.0019, SE = 0.0002, -0.0023 ≤ β ≤ -0.0015), MSS (β = -1.1, SE 

= 0. 29, -1.63 ≤ β ≤ -0.48), and COV (β = -0.003, SE = 0.002, -0.007 ≤ β ≤ 0.001). The next two 

models similarly contained DFO and MSS covariates, but either excluded COV (AICc weight = 

0.35), or included EW (AICc weight = 0.28). Confidence intervals overlapped zero for COV (β = 

-0.003, SE = 0.002, -0.007 ≤ β ≤ 0.001) and EW (β = 0.17, SE = 014, -0.10 ≤ β ≤ 0.44), thus they 

were excluded for parameter estimation.       

Mean covariate values used to generate parameter estimates were DFO (x = 246 m, SE = 

1.6, n = 8,220) and MSS (x = 0.16, SE = 0.001, n = 8,220). I defined the observer with the 

greatest detection probability as the “best” observer, and the observer with the lowest detection 
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probability as the “poorest” observer. Overall detection (pa, pd), based on the 5-min count period, 

ranged from 0.74 (SE = 0.046) for the poorest observer to 0.99 (SE = 0.002) for the best observer 

(Table 1.5). 

     Distance.—Based on 8,220 Northern Bobwhite detections in the Program Distance analysis, 

the hazard-rate key function with the cosine expansion had a 100% probability of being the best 

model of the set of candidate models (∆AICc ≤2). The effective Northern Bobwhite detection 

radius was 201 m (95% CI = 196 ≤ P ≤ 207, Figure 1.4).    

DISCUSSION 

Northern Bobwhite populations have declined precipitously (Sauer et al. 2012), such that major 

conservation action is warranted and is being implemented via the NBCI (Dailey et al. 2011). A 

comprehensive monitoring strategy is needed to track changes in Northern Bobwhite populations 

over time to evaluate the success of these conservation efforts. The BBS is one such population 

monitoring approach, however it is limited in its utility because of the inability to account for 

differences in detectability (Sauer et al. 1994) and its inability to link specific conservation 

actions to specific points on a route.  I have developed and implemented for five years an 

alternative Northern Bobwhite monitoring strategy outlined above for the breeding season for the 

Central Hardwoods Bird Conservation Region.   

My approach accounts for detectability adjusted for temporal, spatial, behavioral, and 

observer covariates to yield less-biased estimates of relative abundance. As outlined by Riddle et 

al. (2010), detection can be broken into three fundamental components: pa, pd, pp.  Previous 

research assessed differences in methodologies used to estimate some of these detection 

components,  (Conway and Simon 2003, Kissling and Garton 2006, Thompson and La Sorte 

2008, Murray et al. 2011, Reidy et al. 2011), although only Riddle et al. (2010) accounted for all 
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three components. I estimated all three components of detection across very broad temporal and 

spatial extents, and included a variety of temporal, spatial, and behavior covariates to better 

understand the detection process for Northern Bobwhites. I then used those parameter estimates 

to demonstrate how point-specific relative abundance varies given my detection results (Table 

1.6).  

Radio-telemetry Surveys 

Availability is difficult to account for, can be more of a limiting factor than observer ability 

(Riddle et al. 2010), and can best be assessed via radio telemetry (Murray et al. 2011). I directly 

measured Northern Bobwhite availability (pa) by monitoring radio-collared birds calling rates. 

Riddle et al. (2010) indirectly separated the components of the detection process to estimate 

detection given availability (pd) and availability (pa) separately by combining dependent double 

observer with time-of-detection methods and computationally isolating pa. My mean Northern 

Bobwhite availability (0.62) for a 5-min count was much lower than that derived by Riddle et al. 

(2010) from their field data (0.84). My methodology used real-time telemetry-based calling 

surveys conducted on a large sample of individual males, across a broad sampling period across 

two years, and included covariates to explain Northern Bobwhite calling behavior given 

temporal and behavioral changes. This approach represents a comprehensive evaluation of this 

parameter which has not been included in most Northern Bobwhite monitoring studies to date. 

Northern Bobwhite calling availability varied annually (Year), decreased with minutes-since-

sunrise (MSS), and increased by the presence of other calling males in the area (ABUN). When I 

used mean MSS and ABUN, Northern Bobwhite availability was 50% greater in 2010 than in 

2011, which translates into a population adjustment factor that is doubled in 2010 (n = 1.2) 

compared with 2011 (n = 2.4). If I held Year, and MSS constant, Northern Bobwhite availability 
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increased by 49% when at least one other male Northern Bobwhite called during a point count, 

and increased by 69% when four other males called during a point count. Alternatively, if I held 

Year and ABUN constant, Northern Bobwhite availability declined by 34%. The number of 

conspecifics on my counts ranged from 0 to 6.  The presence of conspecifics caused detection for 

a 5-min count to vary significantly, ranging from 12% to 62% in 2011.  Wellendorf (2004) used 

radio-telemetry data from coveys to show a positive relationship between the number of other 

coveys calling, and covey calling availability. Duren et al. (2012) used female playback to elicit 

a breeding male calling response, but these results are confounded by the uncontrolled presence 

of other males calling during the playback, and his results are impractical because females rarely 

vocalize. Similarly Hansen and Guthrey (2001) used recordings of male Northern Bobwhite 

vocalizations to determine if playback affected calling rates. However, like Duren et al. (2012), 

their results are confounded by the lack of experimental control for surrounding males calling, 

and they did not have encounter histories associated with specific males thus their inferences 

were incorrect. Thus, my results are the first to definitively relate the effects of calling 

conspecifics to breeding Northern Bobwhite availability. Although Northern Bobwhites do not 

defend distinct territories per se, other researchers have commented on this relationship of 

conspecifics positively affecting calling rates (Wellendorf et al. 2004, Duren et al. 2012). Given 

the clear significance of this effect on detection, it clearly needs to be incorporated into routine 

point-count based monitoring for Northern Bobwhites.      

Many bird species are most vocal early in the morning, thus most monitoring protocols 

recommend beginning point counts at or before sunrise (Kacelnik and Krebs 1983, Bibby et al. 

2000). Most Northern Bobwhite surveys are conducted within 4 hours of sunrise, when calling 

frequency is greatest (Hansen and Guthery 2001). I corroborated these findings showing 
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Northern Bobwhite availability was greatest at sunrise and declined as the day progressed. 

Northern Bobwhite availability was 34% lower when surveys were conducted 4 hr after sunrise 

and later, reducing the accuracy of a survey.  

Actual changes in Northern Bobwhite abundance could be masked by the annual 

variability in availability from calling. Terhune et al. (2006) documented similar annual 

variability in Northern Bobwhite breeding call rates. I did not detect the same significant 

difference in detection probability between years for roadside surveys, thus I assume that annual 

variability in availability is significant, but becomes less so when observer differences are 

included. One way to account for annual variability is to always account for annual differences 

by including year effects on detection for population estimation. Similarly, variability can be 

reduced by using consistent standardized survey methodologies, and by using the same observers 

among years.   

Off-road Surveys 

Although roadside surveys are criticized because of the potential bias associated with the 

presence of roads and/or associated habitat features (Garton et al. 2005, Morrison et al. 2008), I 

did not observe any affect from these features on detection probability or occupancy of Northern 

Bobwhites. Occupancy was very high on my survey routes (>98% of routes occupied) and was 

weakly positively related to NG cover, and weakly negatively related to FO cover. There was     

<1% change in the occupancy estimate when NG cover was maximized and FO cover minimized 

along my routes which were selected because of their generally open landscapes in the first 

place. Relative abundance and species richness can be influenced by the presence of roads, but 

the effect of roads on detection probability is not well documented (Hutto et al. 1995, Rotenberry 

and Knick 1995, Keller and Scallan 1999). Roadside surveys are convenient for surveying areas 
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of large spatial extent and avoid property access issues (Duren et al. 2011, McCarthy et al. 2012). 

A standardized roadside survey can be easily modified to add multiple species of interest. 

Within-season temporal variation was a more important variable in explaining variability of 

detection in my off-road models.  I documented a peak in Northern Bobwhite calling rates during 

mid-June, likely correlated with breeding phenology, consistent with other studies (Hansen and 

Guthery 2001, Terhune 2009). Northern Bobwhite in the CHBCR begin breeding in May and 

continue breeding into September (Tanner 2012). Unmated males continue to call, seeking 

potential mates throughout the summer, and mated males continue calling when females are 

incubating (Stoddard 1931, Hansen and Guthery 2001). The spike in detection probability is 

likely correlated with a peak in these two nesting behaviors  in mid-June (Terhune 2009).  

Roadside Surveys 

Observer effects were the most influential covariate related to detection probabilities of roadside 

surveys, though distance from observer and minutes-since-sunrise were also important 

covariates. Surveys at broad spatial scales often include multiple observers who can have 

different hearing and identification abilities (Sauer et al. 1994, Campbell and Francis 2011). I 

trained observers prior to surveys, but each person had unique hearing ability and experience. If 

only one Northern Bobwhite was detected at a point and was heard at 500 m, the detection 

probability for the ‘best’ observer was 33% greater than the detection probability for the 

‘poorest’ observer. However, when relative abundance (Abun = 4) and distance from observer 

(DFO = 0 m) were optimized in the model, the observer effect became much less significant (no 

observable difference between observers). Relative abundance at a point count was positively 

related to detection probabilities on roadside surveys, consistent with my telemetry survey 

results. 
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My effective detection radius (201 m) was less than detection distances estimated by 

other researchers for Northern Bobwhites (Duren et al. 2012; 326 m, 331 m). Detection 

probability had a negative, sigmoidal relationship with distance from observer and declined 

drastically beyond the effective detection radius. Restricting observations or analyses to within 

the effective detection radius (201 m) will provide improved detection probability estimates, and 

in turn, more accurate population estimates. Northern Bobwhites were detected >65% of the 

time, given that they were present and available during a 5-min count, if I assumed the ‘poorest’ 

observer was capable of detecting one Northern Bobwhite within 200 m. 

The greatest source of variability was from observers, which can be accounted for 

through an appropriate survey design such as the removal method used on my surveys. Resource 

managers interested in surveying Northern Bobwhites with multiple observers need to 

incorporate observer-specific detection probabilities to adjust raw count data and increase 

accuracy of their counts.   

MANAGEMENT IMPLICATIONS 

Researchers have reported detection probabilities using different methods from roadside-based 

surveys that are comparable to some of my overall detection probability estimates (Duren et al. 

2011 for a 10-min occupancy survey and 3 visits pd, pa, pp = 0.99; Murray et al. 2011 for a 6-min 

removal survey pd, pa = 0.93; Duren et al. 2012 for a 7-min distance survey pd = 0.79) but there 

is a gap in information from existing results to explicitly providing guidance on how to account 

for underlying variability in detection probabilities based on significant explanatory variables. 

Although previous studies report interval-specific and subsequent overall detection probabilities, 

it is unclear to managers what to do with these parameter estimates to adjust their monitoring 

results. I used a comprehensive approach and combined my top explanatory variables for 
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Northern Bobwhite detection from my analyses to generate a Northern Bobwhite detection 

adjustment table for the CHBCR. I generated a function that included the beta estimate of the 

median observer (n = 20) from roadside surveys, the beta estimates of the quadratic function 

explaining ABUN and MSS covariates from radio-telemetry surveys, and the beta estimates of 

the hazard-rate key function with cosine expansion explaining DFO (Table 1.6). I did not include 

year effects because observer effects were more important from roadside survey results, and to 

maximize detection I recommend conducting surveys in June. This table provides guidance for 

biologists and managers to evaluate the magnitude of effects of detection, given each of my most 

influential explanatory variables on accuracy of relative abundance estimates. The ability of 

managers to design surveys based on optimizing these variables will provide more accurate 

population estimates, as well as drive cost-efficient monitoring schemes. I recommend managers 

apply my results and methodologies to design surveys for areas of interest of Northern Bobwhite 

conservation and habitat management. 
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APPENDIX I 

Table 1.1 Major land cover types used to classify habitat during roadside and off-road surveys 

conducted in the Central Hardwoods Bird Conservation Region. 

Habitat Code Habitat Type Description

GM Grass mixture
Field with a mixture of 30-70% NWSG, 

cool season grasses, or forbs

WD Woodland

Savannah-forest transition (~50% canopy 

cover); widely spaced trees with significant 

understory

SC Scrub-Shrub
Abandoned fields that are dominated by 

woody saplings and shrubs

Cool-season Grass

Forest

Native Warm-season 

Grass

CG

FO

NG

Un-mowed field dominated by cool season 

grasses, (e.g. fescue, alfalfa, etc):  >70%

Mature forest with closed canopy, well-

developed under and midstory

Field dominated by native warm season 

grasses - >70%
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Table 1.2  Summary of occupancy model selection procedure results for detection (p) with fixed occupancy probabilities (ψ), of radio-

collared Northern Bobwhites using time-of-detection surveys, grouped by year, conducted from 2010–2011 in the Central Hardwoods 

Bird Conservation Region. 

Model AICc ∆AICc AICc  Weights Model Likelihood No. of Parameters -2log(L)

p(Year+ABUN
2
+MSS

2
) ψ(1) 1194.68 0.00 0.88 1 6 1182.38

p(Year+ABUN
2
+MSS

2
+DOY

2
) ψ(1) 1198.60 3.91 0.12 0.14 8 1182.08

p(Year+ABUN
2
) ψ(1) 1217.20 22.52 0 0 4 1209.06

p(Year+ABUN
2
+DOY

2
) ψ(1) 1220.63 25.94 0 0 6 1208.33

p(Year+ABUN+MSS) ψ(1) 1221.69 27.00 0 0 4 1213.54

p(Year+ABUN+MSS+DOY) ψ(1) 1223.55 28.87 0 0 5 1213.33

p(Year+ABUN) ψ(1) 1244.26 49.58 0 0 3 1238.17

p(Year+ABUN+DOY) ψ(1) 1246.31 51.63 0 0 4 1238.17

p(ABUN
2
+MSS

2
+DOY

2
) ψ(1) 1247.27 52.59 0 0 7 1232.87

p(Year+MSS
2
+DOY

2
) ψ(1) 1292.42 97.74 0 0 6 1280.12

p(Year+MSS
2
) ψ(1) 1294.60 99.91 0 0 4 1286.45

p(Year+MSS) ψ(1) 1297.17 102.48 0 0 3 1291.08

p(Year+MSS+DOY) ψ(1) 1298.94 104.26 0 0 4 1290.80

p(Year) ψ(1) 1350.80 156.12 0 0 2 1346.76

p(Year+DOY) ψ(1) 1350.95 156.27 0 0 3 1344.87

p(Year+DOY) ψ(1) 1351.49 156.81 0 0 4 1343.35

p(Constant) ψ(1) 1375.93 181.25 0 0 1 1373.92
aABUN = abundance of other calling NOBO, DOY = day-of-year, MSS = minutes-since-sunrise.
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Table 1.3  Summary of occupancy model selection procedure results for detection (r) and occupancy (λ) of Northern Bobwhites using 

off-road point counts conducted in 2010 and 2011, in 3 different distance from road (DFR) categories, on FCMR, KY & TN; PWMA, 

KY; and Livingston County, KY. 

Model AICc ∆AICc AICc  Weights Model Likelihood No. of Parameters -2log(L)

r (Visit) λ(FO+NG) 1900.62 0.00 0.52 1 6 1888.3

r (Visit+Year) λ(FO+NG) 1902.73 2.11 0.18 0.35 7 1888.3

r (Visit+DFR) λ(FO+NG) 1902.92 2.30 0.16 0.32 8 1886.37

r (Constant) λ(FO+NG) 1905.06 4.44 0.06 0.11 4 1896.91

r (Year) λ(FO+NG) 1907.13 6.51 0.02 0.04 5 1896.9

r (DFR) λ(FO+NG) 1907.30 6.68 0.02 0.04 6 1894.98

r (Constant) λ(FO) 1907.33 6.71 0.02 0.03 3 1901.24

r (Constant) λ(NG) 1908.62 8.00 0.01 0.02 3 1902.53

r (Constant) λ(GM) 1909.67 9.05 0.01 0.01 3 1903.58

r (DFR) λ(Constant) 1910.9 10.46 0 0.01 4 1902.93

r (Constant) λ(DFR) 1911.22 10.60 0 0 4 1903.07

r (Constant) λ(Constant) 1912.06 11.45 0 0 2 1908.02

r (DFR+Year) λ(FO+NG) 1913.05 12.43 0 0 9 1894.36

r (Constant) λ(SC) 1912.67 12.05 0 0 3 1906.58

r (Constant) λ(Year) 1913.79 13.17 0 0 3 1907.7

r (Constant) λ(CG) 1913.99 13.37 0 0 3 1907.9

r (DFR) λ(DFR) 1914.5 14.17 0 0 6 1902.47

r (Constant) λ(DFR+Year) 1917.74 17.12 0 0 7 1903.31  
aCG = cool-season grass, FO = forest, GM = grass mixture, SC = scrub-shrub.
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Table 1.4 Summary of removal model selection procedure results for detection (p) without re-detection probabilities (c), of Northern 

Bobwhites using roadside point counts grouped by observer, conducted from 2008–2012 in the Central Hardwoods Bird Conservation 

Region. 

Model AICc ∆AICc AICc  Weights Model Likelihood No. of Parameters -2log(L)

p(Observer+DFO+COV+MSS) c(0) 20906.82 0.00 0.36 1.00 22 20862.79

p(Observer+DFO+MSS) c(0) 20906.88 0.07 0.35 0.97 21 20864.86

p(Observer+DFO+COV+MSS+EW) c(0) 20907.30 0.48 0.28 0.79 23 20861.27

p(Observer+DFO+COV) c(0) 20918.03 11.21 0 0 21 20876.00

p(Observer+DFO) c(0) 20918.24 11.42 0 0 20 20878.22

p(Observer+DFO+COV+EW) c(0) 20918.85 12.03 0 0 22 20874.82

p(Observer+DFO+EW) c(0) 20919.01 12.20 0 0 21 20876.99

p(Observer) c(0) 21015.90 109.08 0 0 19 20977.88

p(Observer+COV) c(0) 21016.12 109.30 0 0 20 20976.10

p(Observer+EW) c(0) 21016.53 109.71 0 0 20 20976.51

p(Observer+COV+EW) c(0) 21016.77 109.96 0 0 21 20974.75

p(Year+DFO+EW) c(0) 21091.62 184.80 0 0 8 21075.62

p(Year+DFO+COV+EW) c(0) 21093.58 186.77 0 0 9 21075.58

p(Year+DFO+COV+MSS) c(0) 21096.89 190.07 0 0 8 21080.88

p(Year+DFO) c(0) 21114.91 208.09 0 0 7 21100.90

p(Year+DFO+COV) c(0) 21116.80 209.98 0 0 8 21100.80

p(Year+COV+EW) c(0) 21154.90 248.08 0 0 7 21140.90

p(Year+EW) c(0) 21154.93 248.11 0 0 7 21140.92

p(Year) c(0) 21167.06 260.24 0 0 6 21155.05

p(Year+COV) c(0) 21169.05 262.23 0 0 7 21155.05

p(Constant) c(0) 21207.24 300.43 0 0 1 21205.24  
aCOV = percent forest cover, DFO = distance from observer, EW = east/west of the Mississippi River, MSS = minutes-since-sunrise.
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Table 1.5  Model averaged detection probability for Northern Bobwhites with mean covariate 

values (p) and re-detection probability (c) parameter estimates from the removal model results 

(Table 3) for each observer by year from surveys conducted from 2008–2012 in the Central 

Hardwoods Bird Conservation Region. Probability of detection represents the probability that an 

individual bird associated with the sample area is available (e.g., calls; pa), and that it is detected 

given it is available and present (pd) during the 5-minute count. 

Parameter Estimate Standard Error Lower C.I. Upper C.I.

p(Observer1 2008) 0.971 0.006 0.960 0.983

p(Observer2 2008) 0.985 0.007 0.971 0.998

p(Observer3 2008) 0.991 0.002 0.986 0.995

p(Observer4 2008) 0.957 0.016 0.926 0.987

p(Observer1 2009) 0.970 0.006 0.959 0.981

p(Observer2 2009) 0.878 0.037 0.806 0.951

p(Observer1 2010) 0.869 0.032 0.807 0.931

p(Observer2 2010) 0.949 0.010 0.930 0.969

p(Observer3 2010) 0.897 0.025 0.849 0.946

p(Observer4 2010) 0.969 0.007 0.955 0.983

p(Observer5 2010) 0.942 0.019 0.905 0.979

p(Observer1 2011) 0.889 0.025 0.840 0.938

p(Observer2 2011) 0.923 0.013 0.897 0.949

p(Observer3 2011) 0.737 0.046 0.646 0.827

p(Observer4 2011) 0.875 0.016 0.844 0.906

p(Observer1 2012) 0.875 0.025 0.826 0.923

p(Observer2 2012) 0.829 0.026 0.778 0.881

p(Observer3 2012) 0.934 0.022 0.891 0.977

p(Observer4 2012) 0.993 0.002 0.990 0.997

p(Observer5 2012) 0.886 0.020 0.847 0.925

c(0) 0.000 0.000 0.000 0.000

DFO 246 1.6

MSS 0.16 0.001  
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Table 1.6 Adjusted Northern Bobwhite estimates given a known count at a point (mean birds/point), with varying covariate 

values of relative abundance (ABUN), minutes-since-sunrise (MSS, min), and distance-from-observer (DFO, m) for the median 

observer. I constructed the overall model using the combined functions from my roadside and radio-telemetry surveys from 2008–

2012 in the Central Hardwoods Bird Conservation Region.   

Count at Point 0 m 100 m 150 m 200 m 250 m 0 m 100 m 150 m 200 m 250 m 0 m 100 m 150 m 200 m 250 m

1 1.06 1.08 1.17 1.25 1.31 1.14 1.18 1.34 1.49 1.58 1.28 1.34 1.60 1.82 1.96

2 2.01 2.01 2.04 2.07 2.09 2.03 2.04 2.11 2.18 2.23 2.08 2.10 2.24 2.38 2.46

3 3.00 3.00 3.01 3.01 3.02 3.00 3.01 3.03 3.05 3.07 3.02 3.02 3.07 3.13 3.18

4 4.00 4.00 4.00 4.00 4.01 4.00 4.00 4.01 4.02 4.03 4.01 4.01 4.03 4.06 4.09

Count at Point 0 m 100 m 150 m 200 m 250 m 0 m 100 m 150 m 200 m 250 m

1 1.46 1.54 1.92 2.23 2.42 1.66 1.78 2.27 2.69 2.93

2 2.16 2.21 2.43 2.64 2.77 2.28 2.35 2.67 2.96 3.13

3 3.04 3.06 3.16 3.27 3.35 3.09 3.12 3.29 3.46 3.57

4 4.02 4.02 4.08 4.14 4.19 4.04 4.05 4.15 4.27 4.34

Distance-from-observer

Mintes-since-sunrise

Mintes-since-sunrise

180 min

120 min

Distance-from-observer Distance-from-observer

240 min

Distance-from-observer

0 min 60 min

Distance-from-observer
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Figure 1.1 Central Hardwoods Bird Conservation Region with focal counties for 

roadside surveys conducted from May–July, 2008–2012, and focal areas for off-road and 

radio-telemetry surveys conducted from May–July, 2010–2011.  
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Figure 1.2 Relationship of detection probability of radio-collared male Northern 

Bobwhites to the number of other male Northern Bobwhites calling during a 5-minute 

point count on Peabody Wildlife Management Area from May–August 2010 (solid line) 

and 2011 (dashed line). Probability of detection represents the probability that the radio-

collared male calls at least once during the 5-minute count while occupancy is held 

constant at 1. I used the occupancy analysis in program MARK, and I used mean values 

for minutes-since-sunrise in the model. 
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Figure 1.3 Relationship of detection probability of radio-collared Northern Bobwhites to 

minutes-since-sunrise (MSS) during a 5-minute point count on Peabody Wildlife 

Management Area from May–August, 2010 (solid line) and 2011 (dashed line). 

Probability of detection represents the probability that the radio-collared male calls at 

least once during the 5-minute count while occupancy is held constant at 1. I used the 

occupancy analysis in program MARK, and I used mean values for abundance in the 

model. 

  



 

 

Figure 1.4 Detection probability

Bobwhite observations, grouped into distance bands, from roadside surveys conducted 

from May–July, 2008 to 2012 in the Central Hardwoods Bird Conservation Region. Bars 

represent scaled frequencies of observed detections in each distance interval by the total 

area surveyed in a distance interval divided by the estimated density of all detections to 

calculate scaled frequencies (

Detection probability related to effective detection distance of Northern 

ations, grouped into distance bands, from roadside surveys conducted 

July, 2008 to 2012 in the Central Hardwoods Bird Conservation Region. Bars 

represent scaled frequencies of observed detections in each distance interval by the total 

ed in a distance interval divided by the estimated density of all detections to 

(Buckland 2001). 
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Northern 

ations, grouped into distance bands, from roadside surveys conducted 

July, 2008 to 2012 in the Central Hardwoods Bird Conservation Region. Bars 
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CHAPTER II 

ASSESSMENT OF ROADSIDE BIAS FOR HIGH-PRIORITY GRASSLAND AND 

EARLY SUCCESSIONAL BIRDS 
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ABSTRACT 

Convenience sampling in wildlife biology is frequently used because researchers are 

limited by monetary resources, personnel, access to areas of interest, or even time. 

Roadside-based survey methodologies are convenient for monitoring a variety of wildlife 

taxa, including birds, amphibians and mammals. Accounting for and directly assessing 

known biases associated with roadside-based surveys could improve the accuracy and 

extend the inferences of roadside-based parameter estimates and, in turn, strengthen 

management application. I developed a survey to assess roadside biases for estimates of 

relative abundance, occupancy (ψ), detection probability (p), and associated land-cover 

for high priority grassland and early successional songbirds in the Central Hardwoods 

Bird Conservation Region (CHBCR). I located survey transects 300 m apart 

perpendicular to secondary roads, and on each transect, positioned 3 points located on the 

roadside, 300 m, and 600 m away from the road, on Peabody Wildlife Management Area, 

Fort Campbell Military Reservation, and on private lands in Livingston County, KY from 

2010-2011. At each point I conducted a 5-min,100-m, fixed-radius point count listening 

for and recording eight Partners In Flight (PIF) designated high priority grassland 

songbird species: Bell’s Vireo (Vireo bellii), Dickcissel (Spiza americana), Eastern 

Kingbird (Tyrannus tryannus), Eastern Meadowlark (Sturnella magna), Field Sparrow 

(Spizella pusilla), Grasshopper Sparrow (Ammodramus savannarum), Henslow’s 

Sparrow (Ammodramus henslowii), and Prairie Warbler (Setohpaga discolor). I used a 

single-factor analysis of variance to compare relative abundance and percent land-cover 

of species among distance-from-road categories. I estimated species-specific detection 
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probabilities and site occupancy from the Royle-Nichols Repeated Count Data module in 

program PRESENCE 5.7. None of the eight species examined differed in relative 

abundance among distance-from-road categories (P > 0.05), and distance-from-road was 

not maintained in any of the top species-specific models for occupancy (ψ) or detection 

probability (p, ∆AICc ≤2).  Road-side surveys for grassland birds appear to produce 

estimates of relative abundance, occupancy, and detection probabilities which are 

representative for the broader landscape in the CHBCR. 

INTRODUCTION 

Convenience sampling methods for monitoring wildlife populations are often criticized 

because of apparent biases (e. g., Bart et al. 1995, Anderson 2001) but  continue to be 

widely used (Garton et al. 2005, Morrison et al. 2008). Convenience sampling is when 

samples are taken in a non-probabilistic because researchers are limited by monetary 

resources, personnel, access to area(s) of interest, or time available for monitoring. Thus, 

these logistical constraints can justify the use of convenience sampling design 

methodologies in spite of their limitations 

Roadside-based surveys are convenient for monitoring a diversity of wildlife taxa 

including snakes and turtles (Enge and Wood 2002, Steen and Smith 2006), anurans 

(Weir and Mossman 2005, Weir et al. 2005), songbirds (Peterjohn and Sauer 1999), 

raptors (Andersen et al. 1985), ungulates (Collier et al. 2007), and lepidopterans 

(Munguira and Thomas 1992). For some species such as white-tailed deer (Odocoileus 

virginianus), anurans, and many birds, the only trend data available are based on long-

term roadside-based surveys. The North American Breeding Bird Survey (BBS) is 
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perhaps the most well-known convenience sampling design in the ornithological research 

community. Since its establishment in 1966, a multitude of research articles and reports 

have been published utilizing BBS data (Ziolkowski et al. 2010, Sauer and Link 2011, 

Sauer et al. 2012).     

Roadside bird surveys can have three potential problems wherein the data 

collected are not representative of the population at large: altered habitat conditions 

which affect avian distributions, altered avian behavior which may affect dectectability, 

and/or altered observer abilities to detect birds. Roadside surveys could potentially be 

biased if roadside surveys do not representatively sample land-cover types that occur off-

road or if land-cover changes along a roadside survey route are disproportionate to off-

road land-cover changes (Keller and Scallan 1999, Harris and Haskell 2007, McCarthy et 

al. 2012).  Surveys conducted along roads in forested areas can  generate biased estimates 

of species richness and relative abundance, (Hanowski and Niemi 1995, Keller and 

Scallan 1999) and roads can attract songbird nest predators (Heske et al. 2001) or limit 

patch dispersal (Desrochers and Hannon 1997, Laurance et al. 2004). However, results 

from previous research vary based on the species involved and the region being 

monitored (Rotenberry and Knick 1995, Reijnen et al. 1996, Keller and Scallan 1999, 

Forman et al. 2002). Indeed, surveys conducted in a grassland-dominated matrix for 

grassland passerines likely have different biases. In the western United States apparent 

road effects were minimal for Eastern Meadowlark (Sturnella magna), bobolink 

(Dolichonyx oryzivorus), and red-winged blackbird (Agelaius phoeniceus)(Clark and 

Karr 1979, Forman et al. 2002).  



 

50 

 

Noise caused by traffic can indirectly cause behavioral changes in birds.  Road 

noise can affect the calling rate, frequency, and amplitude for certain species, 

contributing to reduced pairing and nesting success (Reijnen et al. 1996, Parris and 

Schneider 2009, Halfwerk et al. 2011). Noise effects from roads in grasslands may extend 

farther into the habitat than in forested landscapes, because grasslands lack dense 

vegetation to attenuate the background noise. For rural roads in an agricultural landscape, 

noise effects can extend up to 100 m from low volume  traffic (5,000 cars/day) and 490 m 

for high volume traffic (≥50,000 cars/day) roads for skylarks (Alauda arvensis)(Reijnen 

et al. 1996, Forman et al. 2002).  

My goal was to assess potential roadside biases for occupancy (ψ) and detection 

probability (p) of high priority grassland and early successional bird species in the 

Central Hardwoods Bird Conservation Region (CHBCR) using a roadside versus off-road 

survey design.  I hypothesized that relative abundance, occupancy and detection 

probability of high priority grassland and early successional species in the CHBCR would 

be lower on roadside survey points, when compared to off-road survey points. I also 

hypothesized that occupancy would be affected by changes in land-cover among on- and 

off-road points.  

STUDY AREA 

I conducted surveys on three sites all located in western Kentucky and Tennessee, on 

Peabody Wildlife Management Area (PWMA), Fort Campbell Military Reservation 

(FCMR), TN-KY and on private lands in Livingston County, KY (LCKY). PWMA is an 

18,854 ha reclaimed surface mine managed by Kentucky Department of Fish and 
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Wildlife Resources (KDFWR) located in Ohio, Muhlenberg, and Hopkins counties, KY. 

Herbaceous cover established during reclamation was dominated by Sericia lespedeza, 

but also included; big bluestem (Andropogon gerardii), little bluestem (Schizachyrium 

scoparium), Indiangrass (Sorghastrum nutans), and switch grass (Panicum virgatum). My 

focal area for surveys was a 3,321 ha unit comprised predominantly of mixed deciduous 

forest, open herbaceous, native warm-season grass, and scrub/shrub cover types. FCMR 

is a 41,842 ha U.S. Department of Defense (DoD) installation located on the Tennessee-

Kentucky state line. Topography is flat to gently rolling with open oak woodlands, 

planted pines, leased agricultural fields, and managed native grasslands. I conducted my 

surveys in native grasslands, cool-season grass patches, and mixed grass-forb areas that 

ranged in size from 73–570 ha.  Private lands in LCKY were restored to native warm-

season grasses and are part of a Northern Bobwhite (Colinus virginianus) focus area 

developed by KDFWR (Morgan 2008). The total focal area is 12,860 ha, and I surveyed a 

subset of fields which ranged in size from 25–450 ha comprising 3.5% of the focal area. 

Average Annual Daily Traffic (AADT) is a metric used by transportation 

departments calculated as the volume of traffic based on a 24-hr two-directional count on 

a given road for a given location divided by 365 days. For secondary roads near FCMR in 

2010, AADT ranged from 84–7,400 (TDOT 2012).  Traffic volume on the actual roads 

surveyed on Fort Campbell were unavailable but based on direct observation during 

surveys, were likely in the low end of the range measured for nearby secondary roads. 

AADT for PWMA in 2010 ranged from 229–2,032 (KYTC 2011), and for LCKY in 
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2010, AADT ranged from 248–2,280 (KYTC 2011). Roads on FCMR were paved or 

gravel, roads on PWMA were gravel, and roads in LCKY were paved. 

METHODS 

I conducted roadside versus off-road surveys on PWMA (n = 36) and FCMR (n = 117) in 

2010, and on PWMA (n = 93) and in LCKY (n = 24) in 2011. Surveys on FCMR were 

not conducted in 2011 because of access restrictions.  I located survey transects 300 m 

apart along a secondary road, and extended transects perpendicularly for 600 m away 

from the road. To avoid repeat detections of individuals, and spatial autocorrelation 

(Hutto et al. 1986, Fletcher and Koford 2002, Alldredge et al. 2006), I positioned points 

(n = 3) on each transect at 0, 300 and 600 m away from the road. At each point I 

conducted a 5 minute 100-m fixed-radius point count listening for and recording all 

individuals aurally or visually detected. Using a range finder, I placed individuals in one 

of five distance bands: 0–25 m, 26–50 m, 51–75 m, 76–100 m, and >100 m.  

Observations  >100 m from the road were censured from the analysis. I surveyed each 

transect three times at approximately 2-week intervals to determine seasonal variation in 

detection and occupancy. The first visit occurred from 19 May – 3 June, the second visit 

from 1 June – 25 June, and the third visit from 25 June – 11 July. I surveyed 270 points 

on 90 off-road transects from 2010–2011.   

Study Species 

I surveyed for high-priority grassland and early successional passerine species that are of 

conservation concern in the CHBCR. These species included: Bell’s Vireo (Vireo bellii, 

BEVI), Dickcissel (Spiza americana, DICK), Eastern Kingbird (Tyrannus tryannus, 



 

53 

 

EAKI), Eastern Meadowlark (Sturnella magna, EAME), Field Sparrow (Spizella pusilla, 

FISP), Grasshopper Sparrow (Ammodramus savannarum, GRSP), Henslow’s Sparrow 

(Ammodramus henslowii, HESP), and Prairie Warbler (Setophaga discolor, PRAW). 

Vegetation Sampling Procedures 

I recorded the percent cover of eight land-cover types within a 100-m radius of the point 

center for all point count stations (Table 2.1). I chose a 100-m radius to match the fixed-

radius point count distance survey methodology, and because observers had difficulty 

classifying cover types beyond 100 m.  

Analyses 

I calculated relative abundance for each species as the total individual 

detections/point/visit. I used a single-factor analysis of variance (ANOVA) to compare 

percent land-cover and relative abundance of species among the three distance-from-road 

categories (DFR). I Inspected Q-Q plots for normality of residuals and I tested for 

equality of variances via a Levene’s test. If test results violated normality or equality of 

variance assumptions, then I used non-parametric Kruskal-Wallis analysis to test for 

differences among categories (Zar 1996). I considered means different at α <0.05. I used 

Fisher’s LSD tests for post-hoc comparisons (IBM SPSS Statistics for Windows; Version 

21.0. IBM Corp. Armonk, NY).  

I estimated species-specific detection probabilities and site occupancy from the 

Royle-Nichols Repeated Count Data module in program PRESENCE 5.7 (Royle and 

Nichols 2003, Hines 2006). The real parameters of the Royle-Nichols Repeated Count 

Data module are r and λ, and conditional detection probability (p) and occupancy are 
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derived parameters (ψ). Unconditional detection probability is considered an estimate of 

detection regardless of site occupancy, whereas conditional detection probability is 

conditioned on occupancy (Royle and Nichols 2003). To evaluate year and distance from 

road effects on detection probability, I grouped surveys based on year (Year) and 

distance-from-road (DFR). I also generated visit-specific detection probabilities to 

account for within-season temporal variation of detection (Visit). I did not include 

observer effects for detection probability, because >90% of the point counts were 

conducted by one observer. I included distance-from-road (DFR) and year (Year) effects 

on occupancy. Additionally, I evaluated heterogeneity in land-cover on points by 

including a covariate for percent land-cover for cover types that could influence species’ 

occupancy. I chose to include 8 different cover types based on life-history and knowledge 

about species’ preferences: (cool-season grass [CG], forest [FO], grass mixture [GM], 

native warm-season grass [NG], old field [OF], riparian [RI], scrub-shrub [SC], and 

woodland [WD]; Table 2.1).   

I developed a suite of species-specific a priori models based on my specific 

objectives. I used Akaike’s Information Criterion adjusted for small sample sizes (AICc) 

for model selection. I considered models with a ∆AICc ≤2 to be the most influential in 

explaining the variability in the system (Burnham and Anderson 2002). Rather than 

include every potential combination of covariates for detection probability (p) and 

occupancy (ψ), I modeled covariates influencing the parameter for occupancy (ψ) first 

(DFR, Year, Cover Types), while holding detection probability (p) constant.  I then 

improved the best model explaining occupancy (ψ) by including covariates (DFR, Visit, 
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Year) to model detection probability (p). Additionally to examine explicit DFR effects, I 

modeled DFR in combination with covariates from top models for detection probability 

and occupancy and DFR effects singularly for each parameter. I did not include any 

models with interaction terms because I was interested only in additive effects. I used the 

most parsimonious model(s) to generate parameter estimates. I used the mean covariate 

values of land-cover types included in top models to generate occupancy parameter 

estimates. I used parameter estimates that conditioned detection on occupancy to generate 

overall detection probability estimates (Royle and Nichols 2003). 

Assumptions associated with occupancy modeling include: 1) closed populations 

for the duration of the surveys, 2) individuals are never falsely detected at a site when 

absent and may or may not be detected when they are present, and 3) detection of an 

individual at a site is independent of detection of individuals at other sites (MacKenzie et 

al. 2002, MacKenzie et al. 2003). I minimized the likelihood of immigration and 

emigration by surveying within a two-month window during the peak breeding season. 

My populations of interest were largely closed, because these species establish distinct 

breeding territories and defend them during the breeding season. Some movement of 

individuals probably did occur if nests failed, but I assumed this had minimal effects on 

the results.  I limited the number of species being surveyed to eight readily recognizable 

species and only used two experienced observers to conduct surveys, thereby minimizing 

false detections. My overall fixed-radius point counts were separated by 300 m 

minimizing the possibility of movement among them during counts, resulting in spatial 

independence. 
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RESULTS 

Percent land-cover of OF and FO differed among DFR categories (Table 2.2) and there 

were no differences among DFR categories for species relative abundance (Table 2.3). 

The DFR covariate was not included in top models for detection probability or occupancy 

for any species (Table 2.4). For EAME there was one top model with ∆AICc ≤2. For 

BEVI, DICK, FISP, GRSP, HESP, and PRAW there were two competing models with 

∆AICc ≤2, and for EAKI there were 5 competing models with ∆AICc ≤2 (Table 2.4). 

Confidence intervals of β estimates of added detection covariates for second-best BEVI 

and GRSP models overlapped 0, and EAKI detection models always included Year 

effects. Confidence intervals of β estimates of added occupancy covariates for secondary 

DICK, EAKI, FISP, HESP, and PRAW models overlapped zero, and EAKI occupancy 

models always included RI cover covariate. 

Distance-from-road Effects 

Cover types included in our analyses comprised 83% of land-cover on points (CG = 

4.57%, FO = 4.80%, GM = 37.57%, NG = 6.88%, OF = 4.14%, RI = 2.53%, SC = 19%, 

WD = 3.69%; Table 2.1). Mean percent land-cover of OF (ANOVA, n = 270, F = 5.40, P 

< 0.01) was greater on points 600 m away from the road and mean percent land-cover of 

FO (ANOVA, n = 270, F = 16.12, P < 0.05) was greater on roadside points. No other 

land-cover comparisons differed among distance-from-road categories (P > 0.05, Table 

2.2); neither FO nor OF were included in top occupancy models.  

DICK (x = 1.32/point/visit, SE = 0.08, n = 270) and FISP (x = 1.32/point/visit, SE 

= 0.05, n = 270) were the most abundant species. HESP (x = 0.53/point/visit, SE = 0.05, 
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n = 270), GRSP (x = 0.36/point/visit, SE = 0.03, n = 270), EAME (x = 0.35/point/visit, 

SE = 0.04, n = 270), BEVI (x = 0.33/point/visit, SE = 0.03, n = 270), and PRAW (x = 

0.27/point/visit, SE = 0.02, n = 270) were moderately abundant having on average, at 

least one individual counted during 3 visits. EAKI (x = 0.10/point/visit, SE = 0.01, n = 

270) was the least abundant species. DICK, EAKI, and GRSP did not meet assumptions 

of normality based on Levene’s Test (P < 0.05), thus I use a Kruskal-Wallis comparison. 

Species relative abundance did not differ (P > 0.05) for any of the eight species 

monitored among DFR categories (Table 2.3). 

The DFR covariate was not included in any top models explaining detection 

probability or occupancy for any species, although DFR was included in second-best and 

third-best models for detection probability for EAKI and GRSP and in second-best 

models for occupancy for DICK, HESP, and PRAW. Confidence intervals of beta 

estimates for EAKI detection probabilities of the third-best model that included a Year 

and DFR effect on detection probability overlapped zero (β1,2010 = -1.03, SE = 0.55, -2.11 

≤ β ≤ 0.05; β2,2010 = -0.96, SE = 0.55, -2.03 ≤ β ≤ 0.12; β3,2010 = -0.81, SE = 0.54, -1.87 ≤ 

β ≤ 0.24; β1,2011 = 0.42, SE = 0.55, -0.66 ≤ β ≤ 1.49; β2,2011 = -1.11, SE = 0.61, -2.30 ≤ β ≤ 

0.08).  Confidence intervals of beta estimates for the DFR covariate for GRSP detection 

probabilities of the third-best model that included a Visit and DFR effect on detection 

probability overlapped zero for the first two distance categories (0 m = 0.49, SE = 0.29,   

-0.06 ≤ β ≤ 1.05; 300 m  = -0.17, SE = 0.27, -0.70 ≤ β ≤ 0.36; 600 m = -0.54, SE = 0.25, 

1.04 ≤ β ≤ 0.04). Confidence intervals of beta estimates for the DFR covariate for DICK 

occupancy of the second-best model that included GM and DFR effects on occupancy 
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overlapped zero for the first two distance categories (0 m = -0.09, SE = 0.11, -0.31 ≤ β ≤ 

0.11; 300 m  = 0.07, SE = 0.10, -0.13 ≤ β ≤ 0.26; 600 m = 0.25, SE = 0.11, 0.04 ≤ β ≤ 

0.47). Confidence intervals of beta estimates for the DFR covariate for HESP occupancy 

of the second-best model that included GM and DFR effects on occupancy overlapped 

zero (0 m = -0.23, SE = 0.15, -0.55 ≤ β ≤ 0.03; 300 m  = -0.07, SE = 0.13, -0.34 ≤ β ≤ 

0.19; 600 m = 0.28, SE = 0.19, -0.10 ≤ β ≤ 0.66). Confidence intervals of beta estimates 

for the DFR covariate for PRAW occupancy of the second-best model that included SC, 

GM, and DFR effects on occupancy overlapped zero (0 m = -0.23, SE = 0.19, -0.60 ≤ β ≤ 

0.14; 300 m  = -0.37, SE = 0.19, -0.74 ≤ β ≤ 0.01; 600 m = 0.44, SE = 0.26, -0.07 ≤ β ≤ 

0.96). 

Temporal Effects 

Visit was the most common variable explaining detection probability, included in top 

models for every species except FISP in which Visit occurred in  the second-best model. 

Year was also an important variable explaining detection probability and was included in 

top models for DICK, EAKI, EAME, FISP, GRSP, and HESP. Occupancy for all species 

models was influenced by combinations of Year, and/or land-cover covariates (Table 

2.4). 

Conditional detection probabilities for EAKI, EAME, and PRAW were greatest 

during the first visit and declined during the second and third visits (EAKI- β1 = 0.59, SE 

= 0.31, -0.01 ≤ β ≤ 1.20; β2 = 0.16, SE = 0.10, -0.15 ≤ β ≤ 0.27; β3 = -1.44, SE = 0.46,      

-2.35 ≤ β ≤ -0.53; EAME- β1 = 0.47, SE = 0.17, 0.13 ≤ β ≤ 0.81; β2 = 0.30, SE = 0.17,      

-0.04 ≤ β ≤ 0.64; β3 = -0.41, SE = 0.45, -1.30 ≤ β ≤ 0.48; PRAW-β1 = 1.66, SE = 0.24, 
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1.20 ≤ β ≤ 2.13; β2 = 0.76, SE = 0.23, 0.30 ≤ β ≤ 1.21; β3 = -2.17, SE = 0.28, -2.73 ≤ β ≤   

-1.62) Table 2.5). Conditional detection probabilities for BEVI (β1 = 0.44, SE = 0.22, 

0.01 ≤ β ≤ 0.88; β2 = 0.89, SE = 0.23, 0.43 ≤ β ≤ 1.34; β3 = -0.29, SE = 0.18, -0.65 ≤ β ≤ 

0.07) and GRSP (β1 = -0.29, SE = 0.19, -2.44 ≤ β ≤ 0.07; β2 = 0.29, SE = 0.18, -1.85 ≤ β ≤ 

0.64; β3 = 0.11, SE = 0.27, -2.12 ≤ β ≤ 0.64) were greater during the second visit than 

during the first and third visits (Table 2.5). Conditional detection probabilities for DICK 

(β1 = -0.27, SE = 0.11, -0.48 ≤ β ≤ -0.06; β2 = 0.06, SE = 0.10, -0.15 ≤ β ≤ 0.27; β3 = 0.23, 

SE = 0.15, -0.06 ≤ β ≤ 0.52) and HESP (β1 = -0.43, SE = 0.14, -0.70 ≤ β ≤ -0.15; β2 = 

0.06, SE = 0.13, -0.20 ≤ β ≤ 0.32; β3 = -2.14, SE = 0.23, -2.59 ≤ β ≤ -1.69) were greater 

during the second and third visits than the first visit (Table 2.5). FISP detection 

probability was unrelated to visit.  

Conditional detection probabilities were greater in 2010 than 2011 for HESP (β = 

1.27, SE = 0.17, 0.94 ≤ β ≤ 1.61). Conditional detection probabilities were greater in 

2011 than 2010 for DICK (β = -0.32, SE = 0.15, -0.62 ≤ β ≤ -0.03), EAKI (β = -0.86, SE 

= 0.33, -1.50 ≤ β ≤ -0.21), EAME (β = -1.11, SE = 0.51, -2.11 ≤ β ≤ -0.11), and GRSP (β 

= -0.78, SE = 0.33, -3.08 ≤ β ≤ -0.13).  

Occupancies were greater in 2010 than 2011 for EAME (87%; β = 2.73, SE = 

0.37, 2.00 ≤ β ≤ 3.46) and GRSP (58%, β = 0.87, SE = 0.19, 0.51 ≤ β ≤ 1.24). 

Occupancies were greater in 2011 than 2010 for BEVI (63%; β = -1.31, SE = 0.19, -1.69 

≤ β ≤ -0.94) and FISP (4%; β = -0.23, SE = 0.16, -0.54 ≤ β ≤ 0.08). DICK, EAKI, HESP, 

and PRAW occupancies did not differ between years (Table 2.6).  
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Land-cover Effects 

There were 3 percent land-cover covariates included in species occupancy models: GM 

(x = 0.40, SE = 0.19, n = 270), SC (x = 0.20, SE = 0.15, n = 270), and RI (x = 0.017, SE 

= 0.004, n = 270). Percent SC cover was positively related to occupancies of BEVI (β = 

1.11, SE = 0.31, 0.50 ≤ β ≤ 1.73), FISP (β = 0.78, SE = 0.16, 0.47 ≤ β ≤ 1.09) and PRAW 

(β = 1.20, SE = 0.29, 0.63 ≤ β ≤ 1.77). Percent GM cover was positively related to 

occupancies of DICK (β = 1.59, SE = 0.14, 1.32 ≤ β ≤ 1.86), EAME (β = 2.17, SE = 0.22, 

1.73 ≤ β ≤ 2.61), GRSP (β = 1.75, SE = 0.24, 1.28 ≤ β ≤ 2.22), and HESP (β = 1.67, SE = 

0.18, 1.32 ≤ β ≤ 2.02) but negatively related to occupancy of PRAW (β = -1.35, SE = 

0.33, -1.99 ≤ β ≤ -0.71). Percent RI cover was positively related to occupancy of EAKI (β 

= 3.51, SE = 1.10, 1.35 ≤ β ≤ 5.66).  

DISCUSSION 

Studies designed to monitor species populations often involve trade-offs between 

experimental design and logistical constraints (Garton et al. 2005). The ability to use a 

roadside-based survey design to effectively survey high priority grassland and early 

successional bird species could generate important information on population trends, 

species-specific land-cover relationships, and response to management actions. A 

roadside-based survey approach is important for surveying grassland species in the 

CHBCR because most of the land being surveyed is privately owned and gaining access 

across extensive survey areas is impractical.  I designed a survey to assess the potential 

for roadside-based survey biases of relative abundance, occupancy, and detection 
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probability for eight high-priority grassland and early successional bird species in the 

CHBCR. 

Somewhat surprisingly, I detected no differences in relative abundance among 

distance-from-road categories, and there was little evidence of a roadside bias for 

occupancy or detection probability for any species. Based on simulated results from 

Royle and Nichols (2003), the power to detect differences among distance-from-road 

categories was likely adequate because of the relatively large sample size (n = 270), the 

number of surveys (T = 3), the lowest unconditional species detection probability (HESP; 

r = 0.26), and the lowest abundance (BEVI; λ = 0.59) should produce unbiased 

occupancy estimates (ψ), and low variance (σc = 0.17) of abundance (λ). I detected a 

distance-from-road effect in percent old field and forest cover, though neither of those 

cover types were supported in top occupancy models for any species. Thus, I failed to 

reject the null hypothesis that relative abundance, occupancy, and detection probability of 

high priority grassland and early successional species in the CHBCR would be lower on 

roadside survey points, when compared to off-road survey points. To my knowledge, this 

is the first study to directly assess within-season occupancy and detection probability 

roadside biases for the majority of these species. Forman et al. (2002) did find evidence 

of traffic volume effects of adjacent roads on Eastern Meadowlark distributions, in 

conjunction with size of fields, and amount of urbanization, but did not directly assess 

occupancy or include a measure of detection probability. I did not find evidence of a 

spatial roadside effect on relative abundance or occupancy; rather, land-cover at a point 

was the most influential variable affecting species point occupancy.  
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These results contrast sharply with a similar study in a forested matrix in which 

24 species were more abundant along roads and only five species were more abundant on 

off-road counts (Hanowski and Niemi 1995). Population models for forested bird species 

using on-road and off-road data were comparable, and models that included vegetation 

cover and detectability accounted for variation in species occurrence predictions 

(McCarthy et al. 2012). McCarthy et al. (2012) recommended inclusion of land-cover 

covariates to generate population models for forest bird species from roadside survey 

data, conducting off-road monitoring to determine if roadside models can be extrapolated 

to off-road areas, and limiting or accounting for other sources of variability such as 

detection probability. Similar to my results, relative abundance did not differ between on 

and off-road surveys in an open shrub-steppe landscape in Idaho (Hanowski and Niemi 

1995, Rotenberry and Knick 1995).  

I observed annual variability in BEVI, EAME, FISP, and GRSP occupancies 

linked to land-cover variables. BEVI were uncommon on FCMR, and were common on 

PWMA, which is reflected in the greater point occupancy in 2011 due to an absence of 

points on FCMR and addition of points on PWMA and LCKY. Conversely, EAME and 

GRSP were very abundant on FCMR and were less common on PWMA contributing to 

the decreased point occupancy in 2011. These results are a likely product of the changes 

in sampling areas and subsequent changes in land-cover types on points from 2010 to 

2011. Annual variation in point occupancy of FISP was minimal (4%), and occupancy 

was more influenced by SC cover.  
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Point occupancy was affected by percent of a given land-cover type at a point for 

all eight of my focal species. Thus, my hypothesis that occupancy was affected by 

changes in land-cover among on- and off-road points was partly confirmed, though in my 

case land-cover itself generally did not differ among distance-from-road categories. For 

DICK, HESP, and PRAW second-best occupancy models that included DFR covariates, 

effect sizes were very small among DFR categories (<13%), though, points on roads had 

the lowest occupancies for HESP and PRAW. Because top models included land-cover 

covariates, roadside-based surveys that incorporate these point-specific covariates will 

improve accuracy of occupancy parameter estimates. If land-cover differed significantly 

among on- and off-road points, then occupancy estimates could become biased. However, 

I did not detect statistically significant differences among land-cover types included in 

top species models among on- and off-road points on survey sites.    

Contrary to my a priori hypotheses, I did not find evidence of species-specific 

reduced detection probability associated with on-road points when compared with off-

road points. GRSP detection probability was always greater on roadside points than off-

road points. In 2011, during the first visit, GRSP detectability at on-road points was 42% 

greater than at off-road points, although confidence intervals of estimates were wide and 

overlapped. Though I did not quantify noise associated with roadside surveys, I expected 

that traffic noise might reduce species-specific detection probabilities. Acoustic 

frequency for some species can shift in response to traffic noise levels, though rural roads 

may have a minimal effect on species acoustic frequency shifts and observer detection 

probabilities (Parris and Schneider 2009, Griffith et al. 2010). Because I did not find any 
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differences in species detection probabilities between on- and off-road surveys, noise 

associated with roadside surveys in this study likely had a minimal effect on detection.  

My selection of secondary roads for the surveys apparently was successful in limiting 

noise effects.  

Most previous research defined “off-road” points to be between 200 m and 400 m 

off the nearest road (Hanowski and Niemi 1995, Keller and Fuller 1995, Rotenberry and 

Knick 1995, Keller and Scallan 1999, McCarthy et al. 2012). Low traffic volume on 

secondary roads can have an audible distance of up to 100 m and audible noise associated 

with high traffic volumes can extend up to 560 m (Reijnen et al. 1996). The farthest off-

road point on each transect was 600 m from the nearest road. As a result, this experiment 

was designed at an appropriate scale for assessing large-scale roadside effects.  More 

local effects of roads (i.e., within 100 m), may have been missed by the survey design 

Timing of the surveys can have a significant effect on parameter estimates, 

although no single two-week period maximized detectability for all eight species. These 

focal species have different breeding strategies, phenologies, and habitats and represent 

six taxonomically distinct Passeriformes families (Vireonidae. Cardinalidae, Tyranidae, 

Icteridae, Emberizidae, Parulidae). Three species (EAKI, EAME, and PRAW) detection 

probabilities declined as the breeding season progressed. PRAW detection probability 

declined the most, decreasing 64% from the first visit to the third visit. DICK and HESP 

detection showed an opposite trend, with respective detection probabilities increasing 

11% and 33% after the first survey period. BEVI and GRSP detection probabilities were 

>16% greater in June than during May or July.  
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Also, there are inter-species detection probability differences. Two common 

species expected to be easily detectable, DICK and FISP, had overall unconditional 

detection probabilities >75% after 3 visits. Surprisingly, BEVI and GRSP unconditional 

detection probabilities were comparable at 90%, and 71% respectively. The most difficult 

species to detect after 3 visits were HESP (26%) in 2011 and EAKI (31%) in 2010. I 

would anticipate HESP and EAKI to be difficult to detect because their songs are cryptic 

and can be difficult to hear. Visiting points >3 times would improve detection 

probabilities for HESP and EAKI, though detection probabilities of each species during 

the other survey years were as much as 60% greater.   

Differences in species-specific detection probabilities based on breeding 

phenological differences can bias population parameter estimates. In Denali National 

Park and Preserve, AK, passerine species detection probabilities were significantly 

affected by seasonal phenological shifts and peak detection probabilities did not overlap 

among species (Schmidt et al. 2013). Though the cause of shifts is speculated to be linked 

to mating and nesting phenology, information directly linking detection probabilities to 

breeding phenologies is absent for many species (Wilson and Bart 1985). Clearly, 

population parameter adjustments based on detection probabilities need to include a 

within-season temporal component or population parameter estimates will be biased 

(Schmidt et al. 2013). I recommend that surveys either be explicitly designed for a 

species of interest that target periods of peak detectability or that surveys account for 

species-specific temporal shifts in detection probabilities for the duration of a survey by 

bracketing surveys via some minima and maxima survey date.      
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Concerns about biases with convenience sampling can be addressed by explicitly 

designing surveys to test distance-from-road related hypotheses.  Roadside-based surveys 

appear to be unbiased for making inferences about these eight high-priority grassland and 

early successional bird species across the CHBCR. Additional studies assessing potential 

roadside biases of species-specific occupancies and detection probabilities prior are 

needed. Continued use of hierarchical models in which sample and process variability are 

modeled simultaneously (Royle and Dorazio 2008)should also include careful 

consideration of spatially explicit covariates that could affect species occupancy along a 

roadside-based survey. Also results of this research further confirm recommendations of 

other researchers to account for temporal and observational variables while modeling 

detection probability (Sauer et al. 1994, Schmidt et al. 2013). If land-cover variables are 

accounted for, and surveys are conducted to account for seasonal variability in detection 

probability, then population models generated from roadside data should be 

representative of the population at large (McCarthy et al. 2012). Species-specific 

occupancy and detection probabilities were influenced by variables that can be easily 

collected and accounted for during roadside surveys. Survey efficiency can also be 

improved by utilizing convenience surveys. A trained observer can survey approximately 

twice as many on-road points (30 5-min point counts/4 hr) as off-road points (15 5-min 

point counts/4 hr). Using a roadside-based survey to monitor high-priority grassland and 

early successional bird species can be efficient, effective, and survey a large extent area 

while utilizing a fine-grain survey methodology. 
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APPENDIX II 

Table 2.1 Land cover types used to classify habitat during off-road surveys conducted on Fort Campbell Military Reservation, 

KY-TN; Peabody Wildlife Management Area, KY; Livingston County, KY, 2010-2011. 

Habitat Code Habitat Type Description

CG Cool season grass field Un-mowed field dominated by cool season grasses (usually tall fescue):  >70%

FO Forest Mature forest with closed canopy, well-developed under and midstory

GM Grass mixture Field with a mixture of 30-70% NWSG, cool season grasses, or forbs

NG NWSG Field dominated by native warm-season grasses - >70%

RI Riparian Area with running or standing water

SC Scrub-Shrub Abandoned fields that are dominated by woody saplings and shrubs

WD Woodland Savannah-forest transition (~50% canopy cover); widely spaced trees with significant understory

Abandonded field with woody encroachment and undergoing succession (limited saplings, often with 

blackberry, thistle, etc.)
Old fieldOF
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Table 2.2 Mean percent cover of various cover types at point counts conducted in 3 

distance-from-road (DFR) categories on Fort Campbell Military Reservation, KY-TN; 

Peabody Wildlife Management Area, KY; Livingston County, KY.  

Cover Type DFR N Mean SE F
a

P-value
a

LCI UCI

CG 0 m 90 0.04 0.01 0.44 0.64 0.01 0.06

300 m 90 0.03 0.01 0.01 0.05

600 m 90 0.02 0.01 0.00 0.04

FO 0 m 90 0.11 0.02 16.12 0.00* 0.07 0.15

300 m 90 0.01 0.01 0.00 0.02

600 m 90 0.03 0.01 0.01 0.05

GM 0 m 90 0.37 0.03 0.83 0.44 0.31 0.42

300 m 90 0.43 0.04 0.36 0.50

600 m 90 0.40 0.03 0.33 0.47

NG 0 m 90 0.03 0.01 2.29 0.10 0.01 0.05

300 m 90 0.07 0.02 0.03 0.10

600 m 90 0.08 0.02 0.05 0.12

OF 0 m 90 0.01 0.01 5.40 0.01* 0.00 0.03

300 m 90 0.03 0.01 0.01 0.05

600 m 90 0.06 0.01 0.03 0.09

RI 0 m 90 0.02 0.01 0.08 0.93 0.00 0.03

300 m 90 0.02 0.01 0.00 0.03

600 m 90 0.02 0.01 0.00 0.03

SC 0 m 90 0.18 0.02 2.11 0.12 0.14 0.22

300 m 90 0.24 0.03 0.18 0.30

600 m 90 0.18 0.02 0.13 0.23

WD 0 m 90 0.04 0.01 0.52 0.60 0.01 0.06

300 m 90 0.03 0.01 0.01 0.04

600 m 90 0.04 0.01 0.02 0.06  
aF and P-value statistics are from a single-factor Analysis of Variance 
*Significant at P < 0.05 
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Table 2.3 Relative abundance (individuals/point/visit) for focal species at on- and off-

road point counts conducted in 2010 and 2011 in 3 different distance-from-road (DFR) 

categories on Fort Campbell Military Reservation, KY-TN; Peabody Wildlife 

Management Area, KY; Livingston County, KY. 

Species DFR n Mean SE F P-Value LCI UCI

BEVI 0 m 90 0.29 0.05 0.59 0.55
a

0.19 0.39

300 m 90 0.38 0.06 0.25 0.50

600 m 90 0.32 0.06 0.20 0.44

DICK 0 m 90 1.10 0.12 2.02 0.16
b

0.86 1.34

300 m 90 1.50 0.15 1.21 1.79

600 m 90 1.37 0.15 1.06 1.67

EAKI 0 m 90 0.12 0.03 1.27 0.24
b

0.07 0.18

300 m 90 0.07 0.02 0.03 0.10

600 m 90 0.10 0.03 0.05 0.16

EAME 0 m 90 0.32 0.06 0.17 0.84
a

0.20 0.44

300 m 90 0.38 0.08 0.22 0.53

600 m 90 0.34 0.08 0.19 0.50

FISP 0 m 90 1.19 0.09 1.39 0.25
a

1.02 1.36

300 m 90 1.36 0.09 1.18 1.54

600 m 90 1.40 0.10 1.20 1.60

GRSP 0 m 90 0.40 0.07 0.33 0.86
b

0.27 0.54

300 m 90 0.35 0.05 0.25 0.45

600 m 90 0.34 0.06 0.22 0.46

HESP 0 m 90 0.42 0.06 1.57 0.21
a

0.29 0.55

300 m 90 0.60 0.09 0.43 0.77

600 m 90 0.58 0.08 0.41 0.75

PRAW 0 m 90 0.24 0.04 0.86 0.42
a

0.16 0.31

300 m 90 0.26 0.05 0.16 0.35

600 m 90 0.31 0.04 0.23 0.39  
aF and P-value statistics are from a single-factor Analysis of Variance 
bP-value statistics are from nonparametric Kruskal-Wallis Test 
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Table 2.4 Akaiki’s Information Criterion adjusted for small sample sizes (AICc), for full 

model sets of occupancy model selection procedure results for detection (r) and 

occupancy (λ) of target species using off-road point counts conducted in 2010 and 2011, 

with land cover covariates, on Fort Campbell Military Reservation, KY-TN; Peabody 

Wildlife Management Area, KY; Livingston County, KY. 

Species Model AICc ∆AICc AICc  wt Model Likelihood No. of Parameters

BEVI r (Visit) λ(Year+SC) 909.94 0 0.52 1.000 6

r (Visit+Year) λ(Year+SC) 910.57 0.62 0.38 0.732 7

r (Visit+DFR) λ(Year+SC) 913.27 3.32 0.10 0.190 8

r (Visit) λ(Year+DFR+SC) 917.50 7.56 0.01 0.023 10

r (Visit+Year+DFR) λ(Year+SC) 917.94 7.99 0.01 0.018 11

r (Visit+Year) λ(Year+DFR+SC) 918.24 8.29 0.01 0.016 11

r (Visit+DFR) λ(Year+DFR+SC) 921.26 11.31 0 0 12

r (Visit+Year+DFR) λ(Year+DFR+SC) 926.13 16.18 0 0 15

r (Constant) λ(Constant) 987.44 77.50 0 0 2

r (DFR) λ(Constant) 990.20 80.26 0 0 4

r (Constant) λ(DFR) 990.42 80.48 0 0 4

r (DFR) λ(DFR) 993.75 83.81 0 0 6

Species Model AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

DICK r (Visit+Year) λ(GM) 2225.31 0 0.53 1 6

r (Visit+Year) λ(DFR+GM) 2227.08 1.76 0.22 0.414 8

r (Visit+Year+DFR) λ(GM) 2228.98 3.67 0.07 0.160 10

r (Visit+Year+DFR) λ(DFR+GM) 2229.76 4.44 0.05 0.108 12

r (Constant) λ(DFR) 2361.01 135.70 0 0 4

r (DFR) λ(DFR) 2362.01 136.70 0 0 6

r (DFR) λ(Constant) 2365.57 140.26 0 0 4

r (Constant) λ(Constant) 2366.07 140.76 0 0 2

Species Model AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

EAKI r (Visit+Year) λ(RI) 522.25 0 0.30 1 6

r (Year) λ(RI) 522.29 0.04 0.30 0.983 4

r (Year+DFR) λ(RI) 523.12 0.86 0.19 0.649 8

r (Year) λ(DFR+RI) 524.17 1.92 0.10 0.383 6

r (Visit+Year) λ(DFR+RI) 524.25 1.99 0.11 0.369 8

r (Year+DFR) λ(DFR+RI) 525.36 3.11 0.05 0.211 10

r (Visit+Year+DFR) λ(DFR+RI) 525.52 3.26 0.05 0.196 12

r (Visit+DFR) λ(RI) 527.69 5.43 0.02 0.066 7

r (Visit+Year+DFR) λ(RI) 531.05 8.79 0 0.012 11

r (DFR) λ(Constant) 531.98 9.73 0 0.008 4

r (Constant) λ(Constant) 532.01 9.76 0 0.008 2

r (Constant) λ(DFR) 533.83 11.58 0 0 4

r (DFR) λ(DFR) 534.02 11.77 0 0 6

Species Model AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

EAME r (Visit+Year) λ(Year+GM) 986.46 0 0.95 1 7

r (Visit+Year+DFR) λ(Year+GM) 989.10 2.64 0.20 0.267 11

r (Visit+Year) λ(Year+DFR+GM) 992.37 5.91 0.05 0.052 11

r (Visit+Year+DFR) λ(Year+DFR+GM) 995.96 9.50 0.01 0.009 15

r (Constant) λ(Constant) 1220.08 233.63 0 0 2

r (DFR) λ(Constant) 1223.04 236.58 0 0 4

r (Constant) λ(DFR) 1223.74 237.28 0 0 4

r (DFR) λ(DFR) 1227.15 240.70 0 0 6  



 

77 

 

Table #2.4 Continued. 

Species Model AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

FISP r (Year) λ(SC) 2110.34 0 0.51 1 4

r (Year) λ(Year+SC) 2110.45 0.11 0.33 0.944 5

r (Year) λ(DFR+SC) 2112.42 2.08 0.18 0.353 6

r (Year+DFR) λ(DFR+SC) 2114.50 4.16 0.06 0.125 8

r (Year+DFR) λ(SC) 2115.76 5.42 0.03 0.067 8

r (Constant) λ(Constant) 2174.74 64.41 0 0 2

r (Constant) λ(DFR) 2176.30 65.96 0 0 4

r (DFR) λ(Constant) 2176.49 66.15 0 0 4

r (DFR) λ(DFR) 2179.02 68.68 0 0 6

Species Model AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

GRSP r (Visit+Year) λ(Year+GM) 1058.14 0 0.61 1 7

r (Visit+Year+DFR) λ(Year+GM) 1059.80 1.66 0.22 0.436 11

r (Visit+Year) λ(Year+DFR+GM) 1060.37 2.23 0.16 0.327 9

r (Visit+Year+DFR) λ(Year+DFR+GM) 1063.79 5.65 0.03 0.059 13

r (Constant) λ(Constant) 1154.48 96.35 0 0 2

r (DFR) λ(Constant) 1155.64 97.50 0 0 4

r (Constant) λ(DFR) 1158.31 100.17 0 0 4

r (DFR) λ(DFR) 1159.08 100.95 0 0 6

Species Model AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

HESP r (Visit+Year) λ(GM) 1442.61 0 0.50 1 6

r (Visit+Year) λ(DFR+GM) 1443.62 1.00 0.30 0.605 8

r (Visit+Year+DFR) λ(GM) 1447.39 4.78 0.05 0.092 10

r (Visit+Year+DFR) λ(DFR+GM) 1448.03 5.41 0.04 0.067 12

r (Constant) λ(DFR) 1616.15 173.54 0 0 4

r (DFR) λ(Constant) 1619.57 176.96 0 0 4

r (Constant) λ(Constant) 1619.59 176.98 0 0 2

r (DFR) λ(DFR) 1619.90 177.29 0 0 6

Species Model AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

PRWA r (Visit) λ(GM+SC) 909.62 0 0.58 1 6

r (Visit) λ(DFR+GM+SC) 909.99 0.36 0.29 0.833 8

r (Visit+DFR) λ(GM+SC) 911.72 2.09 0.20 0.000 4

r (Visit+DFR) λ(DFR+GM+SC) 911.89 2.27 0.11 0.322 10

r (Constant) λ(Constant) 1034.19 124.57 0 0 4

r (Constant) λ(DFR) 1035.47 125.85 0 0 7

r (DFR) λ(DFR) 1035.96 126.34 0 0 6

r (DFR) λ(Constant) 1036.70 127.08 0 0 4
 aDFR = distance from road, GM = grass mixture, RI = riparian, SC = scrub-shrub. 
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Table 2.5 Top model target species visit specific unconditional and conditional detection 

probabilities (p) from off-road point counts conducted in 2010 and 2011 on Fort 

Campbell Military Reservation, KY-TN; Peabody Wildlife Management Area, KY; 

Livingston County, KY. 

Species Detection Probability Visit1 SE Visit2 SE Visit3 SE

BEVI Unconditional 0.54 0.05 0.65 0.05 0.43 0.04

Conditional 2010 0.24 0.07 0.33 0.08 0.17 0.07

Conditional 2011 0.53 0.07 0.64 0.07 0.43 0.07

DICK Unconditional 2010 0.41 0.03 0.49 0.03 0.48 0.03

Unconditional 2011 0.49 0.04 0.57 0.04 0.56 0.04

Conditional 2010 0.62 0.03 0.70 0.03 0.68 0.03

Conditional 2011 0.69 0.03 0.76 0.03 0.75 0.03

EAKI Unconditional 2010 0.15 0.05 0.11 0.04 0.09 0.03

Unconditional 2011 0.30 0.10 0.22 0.08 0.19 0.07

Conditional 2010 0.09 0.25 0.06 0.25 0.05 0.25

Conditional 2011 0.20 0.25 0.14 0.25 0.12 0.25

EAME Unconditional 2010 0.26 0.05 0.23 0.04 0.18 0.04

Unconditional 2011 0.52 0.11 0.47 0.11 0.40 0.11

Conditional 2010 0.39 0.08 0.35 0.07 0.28 0.07

Conditional 2011 0.11 0.04 0.09 0.04 0.07 0.03

FISP Unconditional 2010 0.37 0.05 0.37 0.05 0.37 0.05

Unconditional 2011 0.52 0.05 0.52 0.05 0.52 0.05

Conditional 2010 0.61 0.07 0.61 0.07 0.61 0.07

Conditional 2011 0.78 0.04 0.78 0.04 0.78 0.04

GRSP Unconditional 2010 0.28 0.05 0.40 0.06 0.34 0.05

Unconditional 2011 0.45 0.07 0.60 0.07 0.53 0.07

Conditional 2010 0.31 0.05 0.44 0.05 0.37 0.05

Conditional 2011 0.23 0.06 0.35 0.07 0.29 0.06

HESP Unconditional 2010 0.22 0.04 0.31 0.05 0.30 0.05

Unconditional 2011 0.07 0.01 0.11 0.02 0.11 0.02

Conditional 2010 0.38 0.03 0.50 0.03 0.49 0.03

Conditional 2011 0.15 0.03 0.22 0.03 0.21 0.03

PRAW Unconditional 0.38 0.08 0.20 0.04 0.10 0.03

Conditional 0.28 0.09 0.19 0.09 0.10 0.10  
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Table 2.6 Top model target species occupancy (ψ) and associated λ values from off-road 

point counts conducted in 2010 and 2011 on Fort Campbell Military Reservation, KY-

TN; Peabody Wildlife Management Area, KY; Livingston County, KY. 

Species 2010 2011 2010 2011

BEVI 0.24 0.65 0.27 1.06

DICK

EAKI

EAME 0.92 0.12 2.51 0.13

FISP 0.93 0.97 2.64 3.41

GRSP 0.76 0.32 1.45 0.39

HESP

PRAW 0.70 1.19

0.93 2.70

ψ λ

0.45 0.60

0.93 2.60

 

 

  



 

80 

 

CHAPTER III 

RELATIONSHIPS OF CONSERVATION PRACTICES TO GRASSLAND AND 

EARLY SUCCESSIONAL BIRD OCCUPANCY AND ABUNDANCE 
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ABSTRACT 

North American grasslands have undergone substantial changes since European 

settlement causing declines in precipitous grassland and early successional bird species 

populations. The Conservation Reserve Program (CRP) is the largest federally-funded 

conservation cost-share program in the United States. Many grassland bird species 

respond to CRP management at the patch or field (practice) level but responses to CRP 

and other conservation programs at landscape (programmatic) scales are more difficult to 

assess. My goal was to evaluate the relationship between grassland and early successional 

bird distribution and abundance and conservation practices implemented through NRCS 

programs in the Central Hardwoods Bird Conservation Region (CHBCR). My objectives 

were to 1) determine if the presence of, amount of, or distance to a conservation practice 

at a survey point was related to species occupancy 2) the presence of, amount of, or 

distance to conservation at a survey point was related to species abundance, and 3) 

determine the relative importance of conservation practices in explaining avian 

distribution and abundance when modeled in conjunction with other landscape 

covariates. I designed and implemented a roadside survey by randomly locating five 15-

km routes with 5-min unlimited distance point counts (30 counts/route), along secondary 

roads within focal counties (n = 37) in the CHBCR. I surveyed for 9 grassland and early 

successional focal species that have shown BBS population declines over the past 4 

decades: Bell’s Vireo (Vireo bellii, BEVI), Dickcissel (Spiza americana, DICK), Eastern 

Kingbird (Tyrannus tryannus, EAKI), Eastern Meadowlark (Sturnella magna, EAME), 

Field Sparrow (Spizella pusilla, FISP), Grasshopper Sparrow (Ammodramus 
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savannarum, GRSP), Henslow’s Sparrow (HESP), Northern Bobwhite (NOBO), and 

Prairie Warbler (Setophaga discolor, PRAW). I used National Agricultural Statistics 

Service (NASS) data layers to determine land cover and I used NRCS conservation 

practice information within a 200-m buffer of each point. I used a multi-season robust 

design occupancy module in program MARK 6.1 to model occupancy (ψ) among years, 

colonization (γ), and detection probability (p). I used the general multinomial-Poisson 

mixture model utilizing a removal count framework in program R with the unmarked 

package to model species-specific abundance (a). I modeled detection probabilities first, 

then occupancy and abundance. I included temporal and behavioral covariates as 

explanatory variables for detection probability. I used Akaike’s Information Criterion 

adjusted for small sample sizes (AICc) for model selection. I considered models with a 

∆AICc ≤2 to be most influential in explaining the variability in the system. HESP was the 

least common species, detected on 1.5% of survey points across all years (n = 292) and 

FISP (45%; n = 9,240) was the most common species. Percent of points with a 

conservation practice within 200 m was similar among years (2008 = 4.4%, 2009 = 3.7%, 

2010 = 4.8%, 2011 = 5.7%, and 2012 = 6.2%, n = 5,630), and the average area per 

conservation practice remained consistent among years (2008,  x = 18.9 ha, SE = 2.5, n = 

63; 2009, x = 25.8 ha, SE = 3.4, n = 29; 2010, x = 23.7 ha, SE = 1.7, n = 231; 2011, x = 

22.4 ha, SE = 1.8, n = 229; 2012, x = 26.2 ha, SE = 1.6, n = 334). Land-cover covariates 

were most important in models for species occupancy and abundance models for most 

species. For every species except PRAW, the addition of conservation covariates to top 

land-cover models improved model fit (∆AICc ≤2) of occupancy models. Effects of 
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conservation practices on occupancy in these models were generally weak. No abundance 

models for any species included conservation covariates in top models. DICK occupancy 

decreased by 13% from 2010 to 2012 in Ozark Highlands, Interior Plateau, and Interior 

River Valleys and Hills. DICK occupancy of points in Ozark Highlands, Interior Plateau, 

and Interior River Valleys and Hills was 4% greater for points with conservation than 

points without conservation. EAKI occupancy decreased by >47% from 2010 to 2012. 

NOBO occupancy declined by as much as 28% in the Interior Plateau ecoregion each 

year, and overall declined by >18% on survey points. NOBO occupancy declined by >4% 

in 2009 in the Central Irregular Plains if a conservation practice was 2 km away from the 

survey point. If conservation cost-share programs are contributing significantly to 

grassland and early-successional bird population recoveries, then population level 

parameters such as species occupancy and abundance, should respond positively to the 

overall amount of conservation on the landscape. Part of the challenge in linking the 

effects of conservation practices to avian population response metrics at a landscape scale 

is that conservation occurs minimally throughout the landscape(4–6% of points), and 

conservation effects were swamped out by other land-cover covariates. The next step is to 

use these models to prioritize conservation efforts in the CHBCR by focusing land-cover 

modeled relationships for occupancy and abundance on existing conservation points to 

optimize likelihood of increased species occupancy and abundance. 

INTRODUCTION 

North American grasslands have undergone substantial changes since European 

settlement (Askins 1999, Samson et al. 2004).  These changes can be attributed to 
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increased row crop farming, increased cattle range expansion, suppressed fire regimes, 

urbanization and exotic grass species introduction (Askins 1999, Conner et al. 2001, 

Samson et al. 2004).  State, federal and private conservation agencies have developed a 

variety of programs aimed at reversing the trend of native grassland loss.  

The U.S.D.A. Natural Resource Conservation Service (NRCS) supervises and the 

Farm Service Agency (FSA) implements the Conservation Reserve Program (CRP) 

which is the largest conservation cost-share program in the United States ($1.6 

Billion/Yr)(Klute et al. 1997, Cooper 2003, Roberts and Bucholtz 2005). The CRP was 

passed in the Farm Bill in 1985 with the initial goal of reversing soil erosion (USDA 

2008).  However, in later revisions of the Farm Bill, programmatic goals shifted to 

become more holistic, and encompass ecosystem and wildlife conservation objectives, 

and additional programs such as Environmental Quality Incentives Program (EQIP), and 

Wildlife Habitat Incentives Program (WHIP) were developed. A major goal of CRP and 

other conservation programs is to retire and convert agriculture land to grassland areas, 

predominately though not exclusively, native warm-season grasses (USDA 2008). In 

2008, there were approximately 12.1 million ha enrolled in CRP-type programs in the 

United Sates (Wu 2000); currently (2013) there are 7.3 million ha enrolled.   

Grassland and early successional birds are declining more than any other avian 

guild in North America (Askins 1993, Herkert 1995, Hunter et al. 2001, Vickery and 

Herkert 2001, Brennan and Kuvlesky 2005). Thirteen species have shown significant 

declines in the past 4 decades, and 9 of 14 grassland and early successional species that 

occur east of the Mississippi River have shown at least a 2% population decline per year 
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over that same time period (Askins et al. 2007). Many of these declines can be attributed 

to a loss of breeding habitat within the breeding ranges of these species (Wiens 1985, 

Vickery and Herkert 2001, Murphy 2003, Rittenhouse et al. 2012).  

As a result of these population declines, research intensified to relate species 

distributions to landscape and patch-level habitat characteristics to identify potential 

limiting factors. Results varied by species and by region, but some consistent patterns 

emerged. Grassland obligate bird species consistently use grass-dominated, treeless 

landscapes (Fletcher and Koford 2002, Ribic et al. 2009b), and early successional species 

occur in areas dominated by disturbance maintained early successional habitat associated 

with field/forest transitions (Hunter et al. 2001). One confounding factor among existing 

literature on grassland and early successional bird species was related to how a landscape 

scale was defined. Spatial scales can vary depending on the inference frame of interest 

and availability of avian and land-cover data. Breeding Bird Survey analyses have 

considered 25-km landscapes (Riffell et al. 2008), whereas many others have considered 

localized landscapes surrounding points or focal patches (200 m) or included a gradient 

of landscape effects up to 10 km (Cunningham and Johnson 2006, Fletcher et al. 2006, 

Murray et al. 2008a).  

Generally, grassland obligate species respond to the structure of the grasslands 

and to the patch structure and composition in the landscape in which the grasslands 

occur. Dickcissel (Spiza americana) and Eastern Meadowlark (Sturnella magna) are 

positively affected by the presence and amount of grassland within a landscape (Murray 

et al. 2008a, Riffell et al. 2008, Jacobs et al. 2012) For Dickcissel, Grasshopper Sparrow 
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(Ammodramus savannarum), and Northern Bobwhite (Colinus virginianus) the amount or 

presence of forest cover in a landscape can negatively affect distribution and abundance 

(Cunningham and Johnson 2006, Murray et al. 2008a, Riddle et al. 2008, Riffell et al. 

2008, Osborne and Sparling 2013).  Landscapes with larger contiguous grassland patches 

(Johnson and Igl 2001) were more likely to have populations of patch sensitive species 

like Eastern Meadowlark, Grasshopper Sparrow, and Henslow’s Sparrow (Ammodramus 

henslowii) (Herkert 1994a, Helzer and Jelinski 1999, Ribic et al. 2009b). Dickcissel, 

Eastern Meadowlark, Grasshopper Sparrow, and Henslow’s Sparrow also have greater 

daily predation rates resulting in reduced nest success in smaller patches (Herkert et al. 

2003, Winter et al. 2006) though regional variation exists. Dickcissel and Henslow’s 

Sparrow abundances are reduced related to the amount of edge or shape of a habitat patch 

(Helzer and Jelinski 1999, Winter et al. 2000, Conover et al. 2009). Additionally, Eastern 

Meadowlark and Grasshopper Sparrow are more abundant in disturbed grassland patches 

with minimal vegetative structure. Dickcissel and Henslow’s Sparrow are more abundant 

in areas with dense vegetative structure and litter ground cover which can progress into 

early-successional habitat for species like Bell’s Vireo (Vireo bellii) and Prairie Warbler 

(Setophaga discolor)(Annand and Thompson 1997, Budnik et al. 2002). However, there 

is a continuum of distributional potential whereby some species including Eastern 

Kingbird (Tyrannus tyrannus), Field Sparrow (Spizella pusilla), and Northern Bobwhite 

overlap multiple vegetative types. 

Complexities in species-specific habitat requirements at patch and landscape 

scales can affect distribution and abundance which makes it difficult to assess the effects 
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of conservation practices at a broad scale and for multiple species. Differences in 

vegetation among conservation practice types and differences in the ‘success’ of the 

implementation of a given practice further confound species-specific responses. Several 

studies have evaluated individual species response at the practice scale (practice) level 

(Patterson and Best 1996, Hughes et al. 1999, McCoy et al. 2001, Fletcher and Koford 

2002, Dykes 2005, Gill et al. 2006, Jacobs et al. 2012). Dickcissel, Field Sparrow, 

Grasshopper Sparrow, and Henslow’s Sparrow colonized new CRP fields (Gill et al. 

2006),  and Dickcissel and Grasshopper Sparrow densities were similar in CRP and 

native grasslands (Fletcher and Koford 2002). CRP buffers surrounding crop fields 

increased abundance of Dickcissel, Field Sparrow, and Northern Bobwhite but size and 

shape of buffers can cause different magnitudes of effects (Conover et al. 2009). Plant 

species composition of CRP plantings can affect abundance of Dickcissel, Eastern 

Meadowlark, Field Sparrow, Grasshopper Sparrow, Henslow’s Sparrow, and Northern 

Bobwhite and management disturbances can positively or negative affect species 

(Patterson and Best 1996, Fuhlendorf and Engle 2004, Jacobs et al. 2012, Osborne et al. 

2012).  

Responses to conservation practices at landscape (programmatic) scales (Best et 

al. 1997, Boyce 2006, Herkert 2007a, Pabian et al. 2013) are more difficult to assess than 

local responses. For Eastern Meadowlark, Field Sparrow, Grasshopper Sparrow, 

Henslow’s Sparrow, and Northern Bobwhite,  occurrence or abundance was positively 

affected by the amount of CRP in a landscape (Herkert 1997, Riffell et al. 2008, Pabian et 

al. 2013). Additionally, North American Breeding Bird Survey (BBS) analyses suggested 



 

88 

 

that increasing populations of Eastern Meadowlark, Field Sparrow, and Grasshopper 

Sparrow were in landscapes associated with a greater amount of CRP or rangelands 

(Veech 2006). Generally, information about the effects of conservation practices in CRP-

type programs on early successional species like Bell’s Vireo and Prairie Warbler is 

lacking. Other early successional species like indigo bunting responded positively to CRP 

in the surrounding landscape, and indigo bunting (Passerina cyanea) density is greater in 

CRP buffers surrounding crop fields (Riffell et al. 2008, Conover et al. 2009).  

  Using BBS data to assess the effects of CRP and other conservation programs is 

problematic because the individual survey points have not been geo-referenced 

(Thogmartin et al. 2006, Veech 2006, Riffell et al. 2008). BBS data thus are of large 

spatial extent but course grained in nature. As a result, analyses of these data are limited 

to evaluation of relationships among avian distribution and abundance to landscape 

characteristics within a somewhat arbitrarily defined buffer of the 42-km BBS route. 

Collection and analysis of large extent, fine grain data may lead to more informative 

results relating conservation practices to avian distribution and abundance. The ability to 

more explicitly assess the effects of conservation practices from multiple programs on 

species-specific occupancies and abundances for a broad extent would help guide 

optimization and prioritization of future conservation. 

Relating species distributions to environmental gradients is imperative to 

conservation planning and design. Conceptual and statistical models can explain 

fundamental relationships and studies are either designed to collect data for specific 

hypothesis testing, or data are used in an inductive fashion to create exploratory models. 
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Habitat Suitability Indices have been developed to model landscape-level species-specific 

relationships (Tirpak et al. 2009). However, HSI model relationships are often based on 

expert opinion and may not actually be validated with field data, or perform poorly after 

validation (Murray et al. 2008b, Thogmartin 2010, Bonnot et al. 2013). Hierarchical 

models, in contrast, have been used to explain underlying processes utilizing rigorously 

collected data, while accounting for potential observational errors (Royle and Dorazio 

2008). Rigorous approaches based on appropriate sampling frameworks and analyses are 

necessary to generate the underlying foundation for conservation designs. Hierarchical 

modeling which accounts for potential observation errors, while modeling the biological 

processes of interest, are the most powerful and effective analytical tool to this end 

(Jones-Farrand et al. 2011).  

My goal was to evaluate the relationship between grassland and early 

successional bird distribution and abundance and conservation practices implemented 

through multiple NRCS programs in the Central Hardwoods Bird Conservation Region 

(CHBCR). My objectives were to 1) determine if the presence of, amount of, or distance 

to a conservation practice at a survey point was related to species occupancy 2) determine 

if the presence of, amount of, or distance to a conservation practice at a survey point was 

related to species abundance, and 3) determine the relative importance of conservation 

practices in explaining avian distribution and abundance when modeled in conjunction 

with other landscape covariates.  

Based on other studies (Riffell et al. 2008, Pabian et al. 2013), I hypothesized that 

all species occupancies and abundances would be positively related to the presence and 
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amount of conservation cover at a point. Also, I hypothesized that all species occupancies 

and abundances would decrease as the distance to the nearest conservation practice 

increased. Based on Fletcher and Koford (2008a), Riffell et al. (2008), and Jacobs et al. 

(2012), I hypothesized that a greater percent of grassland-cover at a point (grassland 

herbaceous, pasture, hay) would be positively related to grassland-obligate bird species 

occupancy and abundance, whereas greater percent forested cover would be positively 

related to early-successional obligate species (Hunter et al. 2001, Budnik et al. 2002, 

Bonnot et al. 2013). I also expected that grassland obligate bird species occupancy and 

abundance would be negatively related to the amount of deciduous forest, or the amount 

of row crops at a point whereas early successional species would be more tolerant of 

forest cover (Cunningham and Johnson 2006, Murray et al. 2008a, Ribic et al. 2009b). 

Based on Herkert (1994), Helzer and Jelinski (1999), and Winter and Faaborg (1999), I 

hypothesized that patch-size sensitive species like Dickcissel, Eastern Meadowlark, 

Grasshopper Sparrow, and Henslow’s Sparrow occupancy and abundance would be 

positively related to larger grass patches, minimal patch heterogeneity, or low land-cover 

richness at a point. Lastly, I hypothesized that an increase among years in grassland-

cover and a positive change in the amount of conservation at a point will be positively 

related to the probability of point colonization for target species.  

STUDY AREA 

Roadside point-count surveys were conducted throughout the CHBCR (Figure 3.1). The 

Central Hardwoods was historically characterized by open tall grass prairie intermixed 

with oak and pine woodlands.  It encompasses 29,815,052 ha across 10 central and mid-
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south states.  More than 50% of the land post-European settlement has been converted to 

non-native grass pasture, hay, and range production, typically tall fescue (Schedonorus 

arundinaceus), and planted into crops such as, corn (Zea mays), soybeans (Glycine max), 

sorghum (Sorghum bicolor), wheat (Triticum aestivum) or oats(Avena sativa) (Nuzzo 

1985, Dimmick et al. 2002).  

 My monitoring approach was based on surveying focal counties.  Focal regions 

were originally identified from a Northern Bobwhite  habitat potential model developed 

by Burger et al. (2006).  Focal areas were then further defined during individual state 

workshops as part of the National Bobwhite Conservation Initiative (NBCI) plan revision 

(Dimmick et al. 2002, Burger et al. 2006, Dailey et al. 2011).  In general, I selected eight 

counties per state, unless the CHBCR region in the state was limited.  These focal 

counties represent the best regions for Northern Bobwhite restoration, based on the 

opinion of the biologists and managers that participated in the NBCI workshops in each 

state (Figure 3.1). Thus assessment of the effects of conservation programs in these 

counties might be considered a best-case scenario given the amount of conservation that 

has been implemented and the expected potential for a positive species response. 

In 2008, 4 observers surveyed 3,448 points on 121 routes in 25 counties in 4 

states (IN, IL, KY, and TN; Figure 3.1). In 2009, 2 observers surveyed 1,784 points on 60 

routes in 12 counties in 3 states (AR, MO and OK; Figure 3.1). In 2010, 5 observers 

surveyed 5,324 points on 181 routes in 37 counties in 7 states (AR, IN, IL, KY, MO, OK 

and TN). In 2011, 4 observers surveyed 4,376 points on 146 routes in 23 counties in 5 

states (IN, IL, KY, MO, and TN).  In 2012, 5 observers surveyed 5,406 points on 181 
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routes in 37 counties in 7 states (AR, IN, IL, KY, MO, OK and TN). Surveys were not 

conducted in MS, AL, and OH because those states had very limited area in the CHBCR. 

Observers surveyed three counties in Arkansas (Boone, Fulton, Marion), four counties in 

Illinois (Franklin, Hamilton, Jackson, White) and Indiana (Orange, Ripley, Sullivan, 

Warrick), eight counties in Kentucky (Breckinridge, Butler, Hart, Livingston, Logan, 

Ohio, Warren, Webster) and Missouri (Cape Girardeau, Dent, Howard, Howell, 

Lawrence, Moniteau, Pettis, Wright), one county in Oklahoma (Delaware), and nine 

counties in Tennessee (Coffee, Franklin, Giles, Lawrence, Lincoln [1 route], Maury, 

Montgomery, Robertson, Sumner; Figure 3.1). 

METHODS 

Study Species 

In 2008, I selected for monitoring grassland and early successional focal species that have 

shown BBS population declines over the past 4 decades: Dickcissel (Spiza americana, 

DICK), Field Sparrow (Spizella pusilla, FISP), Grasshopper Sparrow (Ammodramus 

savannarum, GRSP), Henslow’s Sparrow (HESP), Northern Bobwhite (NOBO), and 

Prairie Warbler (Setophaga discolor, PRAW).  In 2009, I added Eastern Meadowlark 

(Sturnella magna, EAME), and in 2010 I added Bell’s Vireo (Vireo bellii, BEVI) and 

Eastern Kingbird (Tyrannus tryannus, EAKI) to the list of focal species at the request of 

state agencies. In 2011 and 2012 I included all focal species in surveys (Table 3.1).  

Route Selection 

Within each of the selected counties, I randomly located five 24.1-km routes along rural, 

secondary roads that crossed non-forested, undeveloped land (Figure 3.2). To locate 
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routes within counties, I overlaid a 3 × 5 grid of 9.6 × 9.6 km blocks onto each county 

map.  I rotated the grid so that it best fit the shape of the county.  I used a random 

numbers table and selected 5 random numbers between 1 and 15 corresponding to the 

grid cell on the overlay.  If the selected cell was >50% non-forested and had sufficient 

room to locate a route (i.e., not covered by urban or suburban areas, forest, or water), the 

route was surveyed.  If a given cell looked marginal in terms of suitability, I randomly 

selected a replacement block.  For suitable cells, I arbitrarily selected a starting point 

within 1.6 km of the northeast corner on a secondary road and traced a 24-km route 

around the block based on secondary road availability. I located point count stations (n = 

30) 805 m apart along each route (Figure 3.3). I evaluated each point for suitability and 

did not survey points which lacked open, undeveloped habitat on at least one side of the 

road (>50% cover in open habitat). When I deemed a point unsuitable, I relocated the 

survey point to the next suitable patch of open habitat and located subsequent points 805 

m from there. 

Roadside Point Counts 

I conducted surveys during the peak breeding season between 15 May and 15 July 2008 – 

2012. Surveys began no earlier than 30 minutes before sunrise and ended no later than 5 

hours after sunrise. I recorded the coordinates of each point from a global positioning 

system in decimal degrees (WGS84 datum).  Routes within a county were visited 

throughout the course of the season to spread out temporal effects on county-level results. 

At each point I conducted a 5-min, 500-m radius point count, recording all 

individuals of target species encountered (aurally or visually). I recorded the minute in 
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which an individual was first detected, but then removed it from the rest of the survey. I 

kept track of individuals throughout the duration of the survey to prevent double-

counting.  Prior to the start of each point count, I used range finders to determine 

distances to field marks at each point to aid in distance estimation. Most passerine species 

have high detectability in open habitat to 50 m (Diefenbach et al. 2003) and Northern 

Bobwhite are detectible up to 500 m (Stokes 1967); thus, I placed individuals in distance 

bands: 0–25 m, 26–50 m, 51–75 m, 76–100 m, 101–250 m and 251–500 m. Surveys were 

not conducted on rainy or windy days (>16 kph). Different observers conducted surveys 

each year, though one observer surveyed for 2 years (2009–2010). I trained all observers 

in survey methodology for 5 days, including species identification, distance estimation, 

and habitat characterization prior to initiation of surveys each year. 

Land-cover Variables 

Because of the broad geographic distribution of points, and to account for potential 

spatial autocorrelation, I grouped points by ecoregions using the Eco Level III 

categorization (USEPA 2013). Points were located in 8 different ecoregions: Central 

Interior Plains (CIP; n = 138), Eastern Corn Belt Plains (ECP; n = 123), Interior Plateau 

(IP; n = 2094), Interior River Valleys and Hills (IRVH n = 1605), Mississippi Alluvial 

Plain (MAP; n = 44), Ozark Highlands (OH; n = 1270), Southwestern Appalachians 

(SWA n = 8), and Western Corn Belt Plains (WCP n = 21). Due to small sample sizes in 

MAP, SWA, and WCP, I included points from these regions with the closest neighboring 

ecoregion (MAP to OH, SWA to IP, and WCP to CIP).  
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I used ArcGIS 10.0 (ESRI, Redlands, CA, USA) to buffer point count locations 

each year. I used National Agricultural Statistics Service (NASS) data layers to determine 

land-cover within a 200-m buffer of each point. I chose NASS data because the data are 

generated annually, and include specific classifications for different crop cover types. I 

used data files from 2008-2012 to correspond with my survey years. NASS raster files 

from 2008-2009 were 56 × 56 m pixels and from 2010-2012 rasters were 30 × 30 m 

pixels. I considered each year separately and matched survey years with their respective 

raster files. I used the extract by mask feature in ArcGIS Spatial Analyst to isolate areas 

within the 200-m buffer. I used 200 m because NOBO effective detection radius is 200 m 

(C. Lituma, unpubl. data), and because other target species effective detection radii are 

approximately 100 m (C. Lituma, unpubl. data). I converted each raster to polygons and 

spatially joined those polygons to each survey point. Once land-cover polygon 

information was spatially linked to survey points, I computed annual point-specific 

covariates of interest including percent land-cover per cover type, maximum land-cover 

per cover type (ha), mean perimeter-to-area ratio (MPAR; a measure of point 

heterogeneity based on cover-specific polygon perimeter-area ratio), total edge (TE), sum 

of land-cover polygons (NumP), and polygon richness of land-cover types (PR).  

I acquired spatially explicit conservation practice information from the NRCS. 

Data associated with each conservation point included: spatial coordinates (Latitude, 

Longitude), the NRCS program under which the conservation was implemented, the 

NRCS practice that was implemented, the date when it was implemented, and the amount 

of area that was enrolled in the conservation practice. I consulted with state agency and 
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NRCS private lands biologists to select the conservation programs and practices to 

include in the analysis. NRCS contracts were initially established as 10-yr contracts, thus 

I used information for conservation from 2004-2012. Because the contracts covered at 

least ten years, the individual practices would not have rolled out of the programs during 

the course of my surveys. As a result, the number and acreage of conservation practices 

increased with each successive survey year. To allow for establishment of conservation 

practices and time for birds to respond, I censured conservation practices which had not 

been implemented at least1 year prior to when roadside surveys were conducted. Mid-

contract management can be an important component in influencing quality of 

conservation for bird species (Osborne et al. 2012). However, I did not have access to 

landowner-specific information on mid-contract management, so this factor was not 

included in analyses. For analysis purposes, I defined conservation as either the presence 

(PCON) or the sum total area (CON; ha) of all appropriate conservation practices located 

within 200 m of survey points for each year, and the distance to the nearest conservation 

practice (NCON; km). I also assessed the landscape surrounding conservation practices 

by using a Pearson’s correlation coefficient between the amount of conservation at a 

point, and the percent cover of all cover types at a point. 

I used Garmin GPS to maintain consistency and accuracy of point locations, 

although minor shifts in point locations were inevitable. I used the spatially and 

temporally explicit information associated with each point in a given year for conducting 

landscape analyses to model the relationships with conservation practices. Points within 

200 m of one another among years were assumed to be the same relative spatial location 
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for the purposes of generating multi-season occupancy estimates. This approach yielded 

5,303 discreet points for the robust design multi-season occupancy analysis whereby each 

point was surveyed in at least 2 years. I coded years in which a point was not surveyed as 

missing data, so those histories were not used to generate parameter estimates.  

Analyses 

     Multi-season Occupancy.— I used a multi-season robust design occupancy module in 

program MARK 6.1 (White and Burnham 1999) to model occupancy among years 

(MacKenzie et al. 2002, MacKenzie et al. 2003). I estimated occupancy (ψ), colonization 

(γ), and detection probability (p). I was interested in modeling covariates with 

colonization, so I chose to utilize the program MARK module that explicitly models 

colonization, and estimates extinction probability (ε) as a derived parameter. Because my 

focus was on colonization probability, I do not present extinction probability estimates. In 

some cases I could not estimate extinction, because colonization probability was 0. I 

considered a single-visit point count divided into five 1-min intervals to be secondary 

sampling occasions, and I considered years to be primary sampling occasions (Rota et al. 

2009). I only included survey points that were surveyed at least twice during the four 

years (n = 5,303), though fewer points were included in the analysis for EAME (n = 

5,159), and BEVI and EAKI (n = 5,075) because data collection began in 2009 for 

EAME, and in 2010 for BEVI and EAKI. 

I used Akaike’s Information Criterion adjusted for small sample sizes (AICc) for 

model selection. I considered models with a ∆AICc ≤2 to be most influential in 

explaining the variability in the system (Burnham and Anderson 2002, Anderson 2008). 
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Though there is an obvious lack of independence within the five one-minute survey 

periods, I directly modeled the removal detection function by estimating minute-specific 

detection probabilities. A benefit to removal surveys is that they directly account for 

potential lack of closure among secondary sampling occasions (Rota et al. 2009). I 

modeled changes in occupancy among primary occasions (years) as a Markov process 

(occupancy at time t is dependent on past occupancy of a point t -1) to account for 

potential temporal autocorrelation (MacKenzie et al. 2006). Temporal autocorrelation 

could be of concern because many songbird species are philopatric which could 

potentially bias occupancy relationships thorough time. I chose to estimate colonization 

(γ) directly so I could include potential changes in land-cover and conservation as 

covariates affecting colonization among years. Extinction probability (ε) can be derived 

by the equation: 
t

ttt
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γψψ
ε
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−−
−= + . I also modeled detection probability (p) with 

covariates to account for observation variability. Detection probability corresponds to the 

probability a species is detected (pd) given it is available (pa) and present (pp) at a site 

from a traditional occupancy modeling framework (MacKenzie et al. 2002).  

I generated a hypothesized list of species-specific a priori models (Table 3.2). For 

all species I first accounted for detection probabilities (p), and then modeled occupancy 

(ψ) and colonization (γ) parameters given the best detection probability model. I included 

temporal and observational covariates for detection probabilities. I modeled differences 

among secondary occasions (minutes) because the data were collected in a removal 

framework and the probability of detection in the final minute was reduced because 

individuals were not re-counted (i.e., were removed from the population). I did not 
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include covariates associated with minute-by-minute detection probabilities because each 

minute interval was considered equal. I included an observer covariate (Obs) because 

differences in observer abilities can contribute substantially to variation in parameter 

estimates (Sauer et al. 1994). Additionally, I included a time-of-year (TOY) covariate 

that grouped observations into early (May 15th – June 1st), mid (June 2nd – June 25th), and 

late (June 26th – July 15th) time periods because differences in breeding phenologies 

throughout the breeding season can affect detection probabilities (Wilson and Bart 1985). 

To model detection probability (p) I tested each covariate singularly against the constant 

detection model, and then I added covariates to the top singular covariate until every 

combination was exhausted.  I limited the number of covariates by excluding observer 

effects for models of species with sparse data where model convergence was problematic 

(BEVI, HESP, PRAW). Overall detection probabilities for a 5-min count were 

determined using the delta method (Williams et al. 2002). 

Once I determined a top species-specific model explaining detection probability, I 

proceeded to model occupancy and colonization with spatial and temporal covariates. I 

grouped points based on ecoregions to examine differences among ecoregions. I used 

Pearson’s correlation coefficient to test for potential multi-collinearity among landscape 

covariates.  Covariates with correlations >0.7 were deemed collinear (Fletcher and 

Koford 2002, Osborne and Sparling 2013). If multi-collinearity was detected, I included 

the covariates with the greatest AICc score when covariates were compared singularly. I 

only included cover-type covariates that comprised >1% of the total area covered by 

survey points (corn [CR], double crop winter wheat/soybean [DWW], deciduous forest 
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[DF], developed low-intensity [DLI], developed open-space [DOS], grassland herbaceous 

[GH], other hay [OH], pasture grass/pasture hay [P], and soybean [SOY]; Table 3.3). I 

modeled the effects of percent cover type, and maximum patch size of each cover-type 

covariate singularly for occupancy, then I included additive combinations of the two most 

extensive cover types based on percent cover and maximum patch size. Once land-cover 

covariates were exhausted, I added patch heterogeneity covariates (MPAR, TE, PR) to 

the best land-cover models to determine if they improved model performance. Lastly, 

after land-cover and heterogeneity covariates were accounted for, I added conservation 

covariates to the top land-cover and heterogeneity models to determine if they improved 

top model performance. My primary interest was in assessing the relationship of either 

the presence/absence of (PCON), amount of (CON), or distance to nearest (NCON) 

conservation to species occupancies, but I wanted to account for all potential spatial 

explanatory covariates prior to including conservation covariates. Once occupancy was 

accounted for, I modeled colonization probabilities (γ) by evaluating models with annual 

differences in colonization, ecoregional differences in colonization, constant 

colonization, no colonization, and effects of changes in land-cover types on colonization. 

I assumed colonization probabilities on points surveyed in 2008 to 2010 to be equal to 

colonization probabilities from 2009 to 2010, because points surveyed from 2008 were 

not surveyed in 2009. Based on beta estimates from the best supported model, I used 

mean covariate values to generate occupancy (ψ), colonization (γ), and detection 

probability (p) parameter estimates. If there was only one model that received the 

majority of support, I did not model average parameter estimates. However, if there were 
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multiple models with ∆AICc ≤2, I inspected beta values. If confidence intervals of beta 

values  did not overlap zero, I considered the explanatory value to be important, and used 

multi-model inference model averaging (Anderson 2008). In cases where confidence 

intervals of beta estimates overlapped zero, I referred to those relationships as being 

weak.  

Assumptions associated with the robust design multi-season occupancy model 

include: 1) no unmodeled heterogeneity in any of the rate parameters, 2) occupancy state 

at a site does not change among secondary sampling occasions, 3) detection of species 

and species detection histories at each location are independent, 4) replicate surveys at a 

site during secondary survey occasions are independent or dependency must be modeled, 

and 5) target species are never falsely detected (MacKenzie et al. 2006, Fiske and 

Chandler 2011). I accounted for potential unmodeled heterogeneity by including 

covariate effects on rate prameters. Occupancy likely did not change among secondary 

sampling occasions because of the use of 1-minute time intervals, but I have certainly 

violated the assumption that each minute was independent. However, I explicitly account 

for this dependence by modeling the decline in detection for each minute in the removal 

process. Detection of a species and species detection histories are independent because 

each individual was only counted once during a survey, and each point was only 

surveyed once in a year, and points were located far enough apart (>800 m) that 

individuals were not likely to have been double counted from movement among points. 

To account for the potential that a species could have been falsely detected at a point I 
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accounted for heterogeneity in detection probability with covariates and trained observers 

for 5 days prior to sampling. 

     Multinomial Poisson Abundance.— I used the general multinomial-Poisson mixture 

model utilizing a removal count framework in program R with the unmarked package to 

model species-specific abundance (Fiske and Chandler 2011). I used Akaike’s 

Information Criterion adjusted for small sample sizes (AICc) for model selection. I 

considered models with a ∆AICc ≤2 to be most influential in explaining the variability in 

the system (Anderson 2008). Similar to the multi-season occupancy analysis, I generated 

a hypothesized list of species-specific a priori models (Table 3.4). For all species I first 

accounted for detection probabilities (p), and then modeled abundance (a) given the best 

detection probability (p) model. I included temporal and observational covariates for 

detection probabilities. Detection probabilities were directly modeled in a removal 

framework, whereby dependence among minute intervals was accounted for. I included a 

covariate for year (Yr) or observer (Obs), and day-of-year (DOY). I included year or 

observer because they are categorical covariates and could not be examined 

simultaneously in the model. I quantified DOY by considering May 15th as the first day 

of surveys (0) and numbered consecutive days. Sample sizes for some species did not 

allow for the inclusion of an observer covariate (i.e., there were too few detections by an 

observer), in which case I only considered Yr, and DOY effects on detectability. Overall 

detection probabilities for a 5-min count were determined using the delta method 

(Williams et al. 2002).  
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To model the abundance process I considered abundance given presence, and I 

excluded zero data from my modeling (Martin et al. 2005). Though zero-inflated models 

can be accommodated with some modeling techniques, the unmarked package does not 

yet have this capacity, so I chose to model occupancy and abundance as separate 

processes (Fiske and Chandler 2011). Count data are often Poisson or negative 

binomially distributed, thus I tested and visually inspected observed counts for each 

species to determine if they were Poisson distributed.  Multinomial Poisson models 

explicitly incorporate this distribution into the model likelihood for abundance based on 

the count data. After I determined the best model for detection probability, I generated a 

list of models for each species to determine the effect of cover types that comprised >1% 

of the total area covered by survey points. Cover types were slightly different for each 

species and from multi-season occupancy models because I only included points where a 

target species was detected and omitted absence points (Table 3.3). I modeled the effects 

of percent cover type, and maximum patch size of each cover type singularly for 

abundance, and then I included additive combinations of the two most extensive cover 

types based on percent cover and maximum patch size. I also modeled abundance as a 

function of ecoregion (ECO), annual differences (Yr), and cover heterogeneity (MPAR, 

TE, NumP). Similar to the multi-season occupancy analysis my interest was in assessing 

the relationship of presence/absence (PCON), amount (CON), or nearest distance 

(NCON) of conservation to abundance. I used mean covariate values to generate 

abundance (a) and detection probability (p) parameter estimates. If there was only one 

model that received the majority of support I did not model average parameter estimates. 
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However, if there were multiple models with ∆AICc ≤2, I inspected beta values. If 

confidence intervals of beta values did not overlap zero, I considered the covariate to be 

important, and used multi-model inference model averaging (Anderson 2008).  

Assumptions associated with removal models include: 1) the population is closed 

during the time of the survey, 2) individuals are accurately identified, recorded, and not 

double-counted at a single point, and 3) individuals have an equal probability of being 

detected; there is no individual heterogeneity of calling rates (Zippin 1956, Farnsworth et 

al. 2002). Individuals were unlikely to move outside of my survey radius during 5-min 

point counts. Reduced movement also minimized potential for double-counting. I 

included covariates in my model to account for heterogeneity. 

There are sophisticated hierarchical modeling techniques that can be used to first 

model occupancy and associated covariates as a Bernoulli-distributed process. Then, 

given occupancy, the abundance process can be modeled as a multinomial Poisson or 

negative binomial distribution incorporating detection probabilities in a removal 

framework. These models can also incorporate zero-inflation factors for occupancies and 

account for spatially autoregressed data with the inclusion of explanatory covariates. 

However, these analytical techniques have been developed in Hierarchical Bayesian 

frameworks which lack easily-implemented model selection tools. Also, they are 

complex and would require a substantial amount of computer runtime and code 

development. As a result, I chose not to use this approach in this dissertation. 
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RESULTS 

I used 27% (n = 1422) of points from 2008 surveys, 15% (n = 783) of points from 2009 

surveys, 91% (n = 4,826) of points from 2010 surveys, 77% (n = 4,059) of points from 

2011 surveys, and 96% (n = 5,070) of points from 2012 surveys for multi-season 

occupancy analyses. Thus, each year there were missing data for some points, and 75% 

(n = 4,237) of points were surveyed in three of five years. Fewer points were surveyed in 

2008 and 2009 because only half of the CHBCR was surveyed in each of those years. 

HESP was the least common species, detected on 1.5% of survey points across all 

years (n = 292), BEVI (1.8%; n = 364), PRAW (4.4%; n = 897), EAKI (7.2%; n = 1,457), 

and GRSP (10.5%; n = 2,127), were also uncommon on survey points. NOBO (27%; n = 

5,489), DICK (30.4%; n = 6,196), EAME (35.7%; n = 7,267), and FISP (45%; n = 9,240) 

were the most common species detected on survey points. 

Percent of points with a conservation practice within 200 m of a point increased 

slightly each year after 2009 (2008 = 4.4%, 2009 = 3.7%, 2010 = 4.8%, 2011 = 5.7%, and 

2012 = 6.2%), though the average area per conservation practice remained consistent 

among years (2008,  x = 18.9 ha, SE = 2.5, n = 63; 2009, x = 25.8 ha, SE = 3.4, n = 29; 

2010, x = 23.7 ha, SE = 1.7, n = 231; 2011, x = 22.4 ha, SE = 1.8, n = 229; 2012, x = 26.2 

ha, SE = 1.6, n = 334). Mean distance to nearest conservation practice remained 

consistent among years (2008, x = 1.7 km, SE = 0.03; 2009, x = 2.5 km, SE = 0.03; 2010, 

x = 1.7 km, SE = 0.02; 2011, x = 1.6 km, SE = 0.02; 2012, x = 1.6 km, SE = 0.02). There 

were 5 conservation programs that comprised >98% of the total area from 2007-2011, 

within the CHBCR (Figure 3.4), and there were 7 conservation practices that comprised 
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>96% of the area from 2007-2011 within the CHBCR (Figure 3.5). Conservation 

practices were most closely associated with pasture/grass pasture/hay cover types (Table 

3.5).  

Multi-season Occupancy 

     Detection Probability.—DICK, EAKI, EAME, FISP, GRSP, and NOBO detection 

probabilities differed among years, and observers (Table 3.6). EAKI detection 

probabilities were low among observers, whereas FISP detection probabilities were 

greatest among observers and species, though there was a lot of variability among species 

and observers (Table 3.6). BEVI detection probability differed among years, and was 

related to the time-of-year (TOY) covariate, and in every year except 2012 detection 

probability increased as the season progressed (Late Season 2010, β = 0.94, SE = 0.30, 

0.34 ≤ β ≤ 1.5; Late Season 2011, β = 0.65, SE = 0.26, 0.13 ≤ β ≤ 1.2). PRAW detection 

probability did not differ among years, but declined by 14% from the early season 

interval (β = 0.20, SE = 0.08, 0.04 ≤ β ≤ 0.37) to the late season interval (β = -0.48, SE = 

0.10, -0.68 ≤ β ≤ -0.28). HESP detection was unrelated to any covariates.  

     Occupancy.— For every species except PRAW, conservation covariates added to top 

models improved model fit (∆AICc ≤2)(Table 3.2). BEVI occupancy from the top model 

was positively related to grassland herbaceous cover, and patch richness in 2011 and 

2012, but negatively related to grassland herbaceous cover and patch richness in 2010 

though confidence intervals of beta estimates overlapped zero (Table 3.7). Presence of 

conservation added to the top model improved model fit, though confidence intervals of 

beta estimates overlapped zero in 2010 and 2011. Sample sizes did not permit for 
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evaluation of occupancy differences among ecoregions, thus I only assessed annual 

occupancy differences. BEVI occupancy differed among years (Table 3.8).  

DICK occupancy from the top model differed among ecoregions, was positively 

related to the percent of pasture grass/pasture hay cover at a point in each year, but 

strongly negatively related to the percent of deciduous forest cover in each year (2008, β 

= -3.3, SE = 0.4, -4.1 ≤ β ≤ -2.5; 2009, β = -2.3, SE = 0.4, -3.2 ≤ β ≤ -1.5; 2010, β = -2.7, 

SE = 0.2, -3.2 ≤ β ≤ -2.3; 2011, β = -2.7, SE = 0.19, -3.1 ≤ β ≤ -2.3; 2012, β = -2.2, SE = 

0.2, -2.6 ≤ β ≤ -1.8) and mean perimeter-to-area ratio at a point in all years (Table 3.7). 

Addition of the presence of conservation (PCON) covariate to the top model improved 

model fit; occupancy was positively related to PCON in all years (β = 0.18, SE = 0.09, 

0.01 ≤ β ≤ 0.35). DICK occupancy decreased by 13% from 2010 to 2012 in Ozark 

Highlands, Interior Plateau, and Interior River Valleys and Hills; Table 3.8). DICK 

occupancy was greatest (>94%) in the Central Irregular Plains ecoregion. DICK 

occupancy in Ozark Highlands, Interior Plateau, and Interior River Valleys and Hills was 

4% greater for points with conservation than points without conservation (Figure 3.6).   

EAKI occupancy was positively related to percent cover of pasture grass/pasture 

hay and the amount of conservation in all years, but negatively related to the percent of 

deciduous forest cover at a point in each year (Table 3.7). EAKI occupancy decreased by 

>47% from 2010 to 2012 (Table 3.8), in all ecoregions except the Eastern Corn Belt 

Plains where occupancies wee low in each year (2010, ψ = 0.09, SE = 0.1; 2011, ψ = 

0.01, SE = 0.01; 2012, ψ = 0.02, SE = 0.02). Model fit improved when amount of 
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conservation was added to the top model, though confidence intervals of beta estimates 

overlapped zero (β = 0.03, SE = 0.02,-0.003 ≤ β ≤ 0.06; Table 3.7).  

EAME occupancy was positively related to percent cover of pasture grass/pasture 

hay in each year, and negatively related to the maximum patch size of deciduous forest in 

every year (Table 3.7). Model fit improved when amount of conservation was added to 

the top model, though confidence intervals of beta estimates overlapped zero (β = 0.006, 

SE = -0.003, 0.09 ≤ β ≤ 0.0.02. EAME occupancy declined each year in every ecoregion; 

Table 3.8).  

FISP occupancy was positively related to percent cover of pasture grass/pasture 

hay in every year except 2010, though confidence intervals of beta estimates overlapped 

zero except in 2011 and 2012 (Table 3.7). FISP occupancy was also positively related to 

the maximum patch size of deciduous forest, but negatively related to the percent cover 

of corn in every year (Table 3.7). Model fit improved when distance to nearest 

conservation was added to the top model (β = -0.06, SE = 0.03, -0.12 ≤ β ≤ -0.003; Table 

3.2). FISP occupancy was 2% greater on points where the distance to nearest 

conservation was <2 km. FISP occupancy was greatest among species and ecoregions (ψ 

≥ 72%), and dramatically increased to 99% in all ecoregions in 2012 (Table 3.8).  

Sample sizes did not permit for evaluation of GRSP occupancy differences among 

ecoregions and years, thus I evaluated ecoregional and annual differences separately. 

GRSP occupancies did not vary among years (Table 3.8). GRSP occupancy did not differ 

among ecoregions, was positively related to percent cover of pasture grass/pasture hay in 

each year, and negatively related to mean perimeter-to-area ratio at a point in each year 
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except 2009 (Table 3.7). Model fit improved when the amount of conservation covariate 

was added to the top model. GRSP occupancy was inconsistently related to the amount of 

conservation annually in terms of the direction of the relationship (positive or negative) 

and the strength of the relationship (i.e. β values with confidence intervals not 

overlapping 0):  2008 (β = -0.052, SE = 0.01, -0.07 ≤ β ≤ -0.03), 2009 (β = 0.001, SE = 

0.0004, 0.0002 ≤ β ≤ 0.002), 2010 (β = 0.002, SE = 0.01, -0.017 ≤ β ≤ 0.02), 2011 (β = 

0.04, SE = 0.017, 0.005 ≤ β ≤ 0.07), and 2012 (β = 0.001, SE = 0.007, -0.012 ≤ β ≤ 0.014; 

Table 3.7).  

Sample sizes did not permit for evaluation of HESP occupancy differences among 

ecoregions and years, thus I evaluated ecoregional and annual differences separately. 

HESP occupancy did not differ among ecoregions and was positively related to the 

maximum patch size of pasture grass/pasture hay cover in all years (β = 0.06, SE = 0.03, 

0.006 ≤ β ≤ 0.1). Model fit improved when presence of conservation was added to the top 

model, though the relationship was .weak, and confidence intervals of beta estimates 

overlapped zero (β = 0.3, SE = 0.25, -0.21 ≤ β ≤ 0.8; Table 3.7). HESP occupancy was 

greatest in 2011 (ψ = 0.09, SE = 0.01), and lowest in 2009 (ψ = 0.02, SE = 0.01; Table 

3.8).  

NOBO occupancy was positively related to percent cover of pasture grass/pasture 

hay in each year except 2011, but negatively related to maximum patch size of deciduous 

forest in each year (Table 3.7).  When distance to nearest conservation was added to the 

top model, model fit improved (β = -0.19, SE = 0.01, -0.20 ≤ β ≤ -0.18). NOBO 

occupancy was the same in 2008 and 2009 among ecoregions, but different in successive 
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years. NOBO occupancy declined by as much as 28% in the Interior Plateau ecoregion 

each year, and overall declined by >18% on survey points (Table 3.8). NOBO occupancy 

declined by >4% in 2009 in the Central Irregular Plains (Figure 3.7), and occupancy 

declined by as much as 9% in other ecoregions in other years if a conservation practice 

was <2 km away (Table 3.8).  

PRAW occupancy was positively related to the maximum patch size of deciduous 

forest, maximum patch size of grassland herbaceous cover, and total edge at a point 

(Table 3.7). PRAW warbler occupancy showed little annual variation and was unrelated 

to conservation covariates (Table 3.8).  

     Colonization.—DICK colonization probabilities were positively related to a positive 

change in pasture grass/pasture hay cover in all years (β = 1.1, SE = 0.31, 0.46 ≤ β ≤ 1.7). 

EAKI (2010, β = -1.9, SE = 0.95, -3.7 ≤ β ≤ -0.007; 2011, unestimable), and HESP 

(2008/2009, β = 1.1, SE = 1.8, -2.4 ≤ β ≤ 4.5; 2010, β = 2.6, SE = 1.7, -0.8 ≤ β ≤ 6.0; 

2011, β = -5.2, SE = 1.6, -8.4 ≤ β ≤ -1.9) colonization probabilities differed among years. 

EAKI colonization probability from 2011-2012 was unestimable, but from 2010-2011 

colonization was 0.03 (SE = 0.03). DICK, EAME, GRSP, and NOBO colonization 

probability differed among ecoregions but not among years (Table 3.9). BEVI, and FISP 

colonization probabilities were zero. Colonization probabilities for PRAW did not differ 

among years or ecoregions, and were unrelated to any changes in land-cover types (Table 

3.9). 

Multinomial Poisson Abundance 

Most species abundances were between 1.00 and 2.50 (Table 3.11). 
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     Detection Probability.—Detection probabilities of all species were always related to a 

combination of observer and day-of-year covariates.   

For DICK, EAKI, EAME, FISP, GRSP, NOBO, the best model explaining 

detection probability included observer (Obs), and day-of-year (DOY) covariates (Table 

3.4). Given presence, detection probabilities of FISP and GRSP were generally greatest 

for all observers for FISP (p ≥ 0.85) and GRSP (≥ 0.75; Table 3.10). For HESP and 

PRAW the best model included year (Yr) and day-of-year (DOY), and for BEVI the best 

model included no covariates (Table 3.4). Given presence, detection probabilities of 

DICK, EAME, and NOBO were high for all observers (p ≥ 0.66; Table 3.10).   

     Abundance.—The addition of a conservation covariate to the best land-cover models 

did not improve model fit for any of the species except EAME (∆AICc ≥ 2) which 

included nearest distance to conservation (NCON) in the top model though confidence 

intervals of beta estimates overlapped zero (β = -0.01, SE = 0.01, -0.03 ≤ β ≤ 0.0001; 

3.4).  

Land-cover variables explained most of the variability for abundance models for 

most species. BEVI abundance was weakly positively related to the number of land-cover 

patches (NumP), and percent grassland herbaceous cover (GH, Table 3.11). HESP 

abundance was weakly positively related to percent pasture grass/pasture hay cover 

(Table 3.11). EAKI and GRSP abundance were only to related annual differences. Year 

effects were also included in top abundance models for DICK, EAME, NOBO, and 

PRAW. FISP was the only species where abundance was related to ecoregional 

differences.  
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DICK abundance was positively related to percent pasture grass/pasture hay cover 

(β = 0.093, SE = 0.03, 0.03 ≤ β ≤ 0.15), but negatively related to percent deciduous forest 

(β = -0.75, SE = 0.07, -0.9 ≤ β ≤ -0.6; Table 3.11), and gradually increased each year 

(Table 3.12). EAME abundance was positively related to percent pasture grass/pasture 

hay cover (β = 0.43, SE = 0.03, 0.37 ≤ β ≤ 0.50) and negatively related to maximum 

patch size of deciduous forest (β = -0.03, SE = 0.006, -0.04 ≤ β ≤ -0.02). FISP abundance 

was positively related to percent deciduous forest cover of (β = 0.18, SE = 0.04, 0.10 ≤ β 

≤ 0.27), percent grassland herbaceous cover (β = 0.63, SE = 0.22, 0.19 ≤ β ≤ 1.1), and 

total edge (β = 0.01, SE = 0.006, 0.004 ≤ β ≤ 0.02). HESP abundance was weakly 

positively related to percent pasture grass/pasture hay cover (β = 0.35, SE = 0.19, -0.02 ≤ 

β ≤ 0.72). NOBO abundance was negatively related to percent deciduous forest (β =         

-0.25, SE = 0.07, -0.38 ≤ β ≤ -0.12), and positively related to maximum grassland 

herbaceous cover (β = 0.108, SE = 0.03, 0.04 ≤ β ≤ 0.16), and weakly related to mean 

perimeter-to-area ratio (β = 0.16, SE = 0.08, 0.001 ≤ β ≤ 0.31). NOBO abundance 

increased from 1.47 (SE = 0.05) in 2010 to 1.79 (SE = 0.05) in 2012. PRAW abundance 

was weakly positively related to maximum deciduous forest cover (β = 0.02, SE = 0.01,   

-0.003 ≤ β ≤ 0.04).  

DISCUSSION 

Land-cover covariates were most important in explaining species occupancy and 

abundance in the CHBCR. Modeling results generally supported the conclusion that 

species occupancy and abundance were more strongly related to land-cover 

characteristics than to the presence or amount of conservation. The species-specific land-
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cover relationships in general confirmed what others have reported, but also identified 

some novel relationships. BEVI and PRAW occupancies were related to the presence of 

early-successional cover types, consistent with other studies (Bonnot et al. 2013). Both 

species occupancies were also related to the amount or size of grassland herbaceous 

cover at a point, characteristic of their typical habitats (Annand and Thompson 1997, 

Budnik et al. 2002). Similarly, BEVI abundance was positively related to the number of 

distinct cover patches at a point, and grassland herbaceous cover (Table 3.11). PRAW 

occupancy was also positively related to the amount of total edge and maximum patch of 

deciduous forest at a point. PRAW are often found along the forest-pasture edge or in 

overgrown hedgerows (Tirpak et al. 2009, Bonnot et al. 2013). PRAW abundance was 

unrelated to grassland herbaceous cover and instead was positively related to the 

maximum patch size of deciduous forest cover. This is consistent with HSI models 

developed by Tirpak et al. (2009) which hypothesized that strategic afforestation will 

promote PRAW population viability.  

HESP are area sensitive (Herkert 1994a, Ribic et al. 2009b) and associated with 

dense grass-dominated vegetation (Cully and Michaels 2000, Bajema et al. 2001, McCoy 

et al. 2001). Not surprisingly HESP occupancy was positively related to maximum patch 

size of pasture grass/pasture hay cover variables, and amount of conservation within 200 

m (Herkert 1994b, Helzer and Jelinski 1999, Cully and Michaels 2000). HESP abundance 

also was positively related to pasture grass/pasture hay cover at a point. Henslow’s 

Sparrows do not typically use pasture/grass fields because they are often overgrazed in 

the region and do not provide sufficient vegetation height and density (Powell 2006).  
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Mean perimeter-to-area ratio at a point was negatively related to DICK and GRSP 

occupancy which supports other studies that documented patch-size sensitivity for these 

species (Winter and Faaborg 1999, Winter et al. 2000, Thogmartin et al. 2006, Murray et 

al. 2008b). DICK, EAKI, EAME, and NOBO occupancies were positively related to the 

percent of pasture grass/pasture hay cover and negatively related to either the percent or 

maximum deciduous forest cover (Cunningham and Johnson 2006, Riffell et al. 2008). 

The magnitude of these relationships differed among ecoregions, species and years, but 

the directionalities were consistent. NOBO and EAME occupancy increased by as much 

as 20%, and EAKI occupancy increased by 40% if percent of pasture grass/pasture hay 

cover was >80% on a point (Table 3.7). NOBO occupancy declined by 50%, and EAME 

occupancy declined by as much as 80% if there was a patch of forest ≥10 ha within 200 

m of a point (Table 3.7). DICK occupancy declined by as much as 40%, and EAKI 

occupancy declined by as much as 60% if deciduous forest cover was >80% on a point 

(Table 3.7). DICK and EAME had greater abundances in landscapes with more grassland 

(Murray et al. 2010), and NOBO abundance was negatively related to the amount of 

forest in the landscape across their range (Riffell et al. 2008).   

FISP commonly occur along forested edges, especially those associated with 

pasture and hay fields (Evans et al. 2008) and responded to taller, denser grassland 

vegetation structure (Herkert 1994a, Jacobs et al. 2012). FISP occupancy was positively 

related to the percent of pasture grass/pasture hay cover, and the maximum patch of 

deciduous forest. Cunningham and Johnson (2006) also showed occupancy was 

positively related to amount of forest in the landscape. FISP abundance was positively 
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associated with amount of deciduous forest and grassland herbaceous cover and total 

edge.  

Covariates describing the presence or amount of deciduous forest were negatively 

related to occupancy and abundance for several focal species. The sampling strategy was 

generally stratified to avoid heavily forested areas for the purpose of maximizing 

detections of focal grassland species. Model results reinforce the importance of large 

grassland patches. The interspersion of deciduous forest generally negatively affected 

occupancies and abundances for many grassland bird species, even in largely non-

forested landscapes. 

My primary objective was to evaluate the relationships between conservation in 

the form of multiple NRCS practices and focal species occupancies and abundances 

while accounting for land-cover covariates and detection probability. If conservation 

cost-share programs and their associated practices are contributing significantly to 

grassland and early-successional bird population recoveries, then population parameters 

such as species occupancy and abundance, should respond positively to conservation on 

the landscape (Askins et al. 2007). Henslow’s Sparrow populations have increased in the 

CHBCR; HESP population increases elsewhere are often attributed to the presence of 

CRP on the landscape (Herkert 2007b). Veech (2006) used BBS trend data to show that 

route-level populations were increasing more than expected in areas with large amounts 

of CRP. Similarly, Riffell et al. (2008) used BBS survey data to examine the effects of 

CRP on bird abundances and found generally positive effects, though relationships varied 

by species and region. More recently, Pabian et al. (2013) documented mixed responses 
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of grassland bird species at a smaller scale (200 m), whereby they were able to relate 

CREP locations within 250 m of a survey point, and 5,000 m of a survey route. However, 

they analyzed data from only one CREP focal areas in Pennsylvania, and results may not 

be applicable to other regions.   

I have hypothesized that species occupancy and/or abundance should be 

positively related to several conservation metrics: the mere presence of conservation at a 

point, the actual amount (ha) of conservation at a point, or the distance from the point to 

the nearest conservation practice. Despite implementation of >200,000 ha of conservation 

practices in the CHBCR from 2004-2012, my results showed a very modest relationship 

between focal avian species occupancy and conservation practices. Furthermore, I was 

unable to document any positive relationship between focal species abundances and 

conservation practices at the scale at which I assessed it. Most of the species that I 

included in my research have shown field level responses to conservation practices in 

other studies (Patterson and Best 1996, Hughes et al. 1999, McCoy et al. 2001, Fletcher 

and Koford 2002, Gill et al. 2006, Jacobs et al. 2012).  

DICK, EAME, FISP, GRSP, HESP, and NOBO have all shown either positive 

density or abundance responses to different conservation plantings and disturbance 

regimes (i.e., prescribed burning, grazing, mowing). Henslow’s Sparrows were found in 

greatest densities on CRP fields, and were absent from pastures in Wisconsin (Ribic et al. 

2009a). In Maryland, FISP colonized CRP fields, and FISP densities were greater on 

CP33 buffers than compared to control crop fields (Gill et al. 2006, Evans et al. 2008). 

DICK and HESP nesting success was increased on CRP fields when compared with other 
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pasture lands (Patterson and Best 1996, Ribic 2009a). Benefits of CRP for these species 

at a field-level scale are fairly well documented. In order for conservation 

implementation to ultimately achieve population goals of stabilizing or increasing 

regional to range-wide populations, conservation effects will have to extend beyond the 

borders of the individual conservation practices into the surrounding landscape. My study 

was designed to evaluate to what extent these landscape-level effects are occurring for a 

suite of focal species in the CHBCR. The study was designed to evaluate avian response 

in generally non-forested landscapes in counties deemed to have the best potential for 

Northern Bobwhite restoration through the NBCI plan revision process. The survey 

design was extensive in spatial scale (37 focal counties in 7 states) yet fine-grained, 

evaluating conservation effects within a 200-m buffer around over 5,000 individual 

monitoring points. As such, this approach was arguably the next logical step-up from 

evaluation of avian response within a given conservation patch, and occurred in areas 

where considerable conservation implementation was on-going. 

There were differences in occupancy among ecoregions for DICK, EAKI, EAME, 

FISP, and NOBO, which partly accounts for the spatial structure and stratification of the 

survey design. Conservation practices implemented in different regions and in areas with 

different dominant land-cover types may not have the same effect on species occupancy 

and abundance. Whittingham et al. (2007) demonstrated that regional species-specific 

differences in habitat associations could affect species response to conservation in 

agricultural landscapes in England and Wales. Also, species occupancy and abundance 

may vary naturally because of eco-regional or rangewide differences. Riffell et al. (2008) 
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evaluated species-specific responses to CRP by grouping BBS survey data by Bird 

Conservation Regions across the Northern Bobwhite range to account for geographical 

variation. Conservation practices on my survey points in the CHBCR were associated 

with pasture grass/pasture hay cover types, but conservation practices in other areas of 

the CHBCR may be associated with more hostile land-cover types. Therefore, it is 

unlikely that conservation located in inappropriate landscapes contributed to weak 

relationships to species occupancy and abundance. 

A different possible explanation for the lack of a stronger conservation response is 

that the amount of conservation (occurring at 4-6% of the points) was insufficient to elicit 

population-level responses across a broad extent. Adding more conservation to the 

landscape could elicit a stronger occupancy or abundance response. However, given the 

monetary costs, uncertainty of fluctuating crop commodity prices, and instability of 

federal funding for conservation programs through the Farm Bill, increasing the amount 

of conservation may be unlikely. Alternatively, the implementation of conservation 

practices needs to be even more focused and strategically driven, so that a greater amount 

(i.e., >6%) of conservation is implemented in areas which have the greatest potential for 

grassland bird conservation.  Landscape models, such as those developed in this study, 

could be effective tools for deciding which areas warrant this focused conservation 

implementation.    

Another explanation for the lack of a strong conservation response may be related 

to the generally small size of conservation practices (x ≈ 22 ha). Area and patch-size 

sensitivity has been well documented for some grassland species (Winter and Faaborg 
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1999, Thogmartin et al. 2006, Murray et al. 2008b, Ribic et al. 2009b). A limited 

distribution of scattered, predominantly small-sized conservation practices may be 

ineffective at eliciting species occupancy and abundance responses. Small restored areas 

can also act as ecological traps for grassland birds, which may limit the persistence of the 

local populations in these small patches (McCoy et al. 1999, Seigel and Lockwood 2010), 

Lituma et al. 2012).  Alternatively, despite nomadic life-history strategies for most 

grassland passerines, small restored areas on the landscape might have lower colonization 

and persistence rates by chance alone. Identification and implementation of conservation 

practices in new areas is a more risky conservation strategy, because if a species is not 

present in an area, the risk exists that even after conservation new areas will remain 

uncolonized. Colonization probabilities for DICK, EAME, GRSP, and NOBO were 

different among ecoregions. BEVI and FISP colonization probabilities were zero. There 

are two reasons why colonization probabilities could approach zero 1) species are rare, 

and the probability of an individual colonizing a point from one year to the next is 

minimal, or 2) species are so common that most points are occupied, and there are 

minimal opportunities for colonization. In the case of BEVI \the former is probably the 

case, whereas for FISP, the latter is the likely scenario. In Maryland, FISP colonized CRP 

fields (Gill et al. 2006, Evans et al. 2008), but colonization probabilities related to 

conservation practices for other species is difficult to document.     

A final possible explanation related to the lack of a strong conservation effect 

may be related to the actual vegetation structure and composition of the practices 

implemented. Dykes (2005) visited a sample of CRP fields across Tennessee and noted 
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that most did not provide appropriate structure for priority grassland birds, thus limiting 

the effectiveness of the conservation practice. It was impractical in my study to evaluate 

the quality of the implementation across >300 conservation points visited. I did include a 

one year lag-time post-establishment in the analysis to allow time for development of the 

practice vegetation. Other studies have documented that mid-contract management and 

disturbance regimes can affect grassland and early successional bird species occupancy, 

density or abundance (Granfors et al. 1996, Fuhlendorf and Engle 2004, Gill et al. 2006, 

Osborne et al. 2012). For this study, however, mid-contract management information was 

unavailable through NRCS at the programmatic level. Collection of data annuallyon the 

condition of individual practices could improve our understanding of why conservation 

programs fail or succeed. Improved implementation of practices and/or mid-contract 

management ultimately could increase the strength of the conservation response.   

This research answers a call for the use of better quality data to analyze breeding 

bird distributions and incorporate the effects of conservation at a fine-grain scale across a 

large spatial extent (Brennan and Kuvlesky 2005, Veech 2006, Fitzgerald et al. 2009). I 

used a stratified, focal-species driven survey to describe factors influencing dynamic 

multi-season species occupancy models while accounting for important detection 

variables and assessing the effects of conservation. I then used a hierarchical modeling 

framework that accounted for detection probabilities to model areas where species were 

present to determine variables related to observed abundanceas. 

Because these models were developed using spatially-explicit data and 

incorporated eco-regional differences, they can be used to develop models which identify 
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areas in the CHBCR of high probability of occupancy and abundance. The next step is to 

use these models to prioritize conservation efforts in the CHBCR.  This can be achieved 

by using land-cover modeled relationships for occupancy and abundance focused on 

existing conservation points in the BCR.  If landscapes surrounding conservation points 

are suitable for a species of interest given model parameters then future conservation can 

be focused in those areas to improve species probabilities of occupancy, and abundance. 

Thus, the effectiveness of existing conservation can be assessed and future conservation 

prioritized to areas where occupancy and abundance are expected to be favorable. 

Multi-season occupancy models are important because responses to conservation 

across the landscape are species specific and variable through time. If conservation 

programs and practices are going to be effective at reversing grassland and early 

successional bird population declines managers should consider how to improve 

occupancy and abundances of target species across broad landscapes. Documented 

proximate conservation effects are common (Best et al. 1997, Fletcher and Koford 2002, 

Murray et al. 2008a, Ribic et al. 2009a, Jacobs et al. 2012), but there is an apparent lack 

of cumulative effects across broad landscapes. Retrospective analyses detected regional 

population trend reversals correlated with increased conservation (Herkert 1997, Veech 

2006) but such analyses were not at scales appropriate for informing future conservation 

implementation.  

Year was also an important covariate for all species occupancy models except 

PRAW, highlighting the importance of temporal variation in grassland bird distributions. 

Annual changes in land-cover across the landscape will contribute to changes in species 
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occupancy. All of these species occur in landscapes dominated by row-crop agriculture 

and grazing, which changes annually in location and extent. Though many grassland and 

early successional species are adapted to shifting land-cover mosaics, they are still 

limited by availability of suitable cover types. Shifts in global agriculture commodity 

markets can dramatically affect the amount or type of crop cover across a landscape. A 

dynamic multi-season occupancy model that can explicitly account for these changes can 

be a useful approach for capturing the dynamic nature of this system.  

My results suggest that recent conservation implementation approaches have 

failed to elicit a strong population response for a variety of potential reasons from most 

priority grassland species in the Central Hardwoods Bird Conservation Region. Future 

conservation planning should utilize maps delineating focal species hot-spots overlapped 

with conservation to focus and identify priority areas for future conservation 

consideration. Areas with large amounts of conservation and appropriate species-specific 

land-cover characteristics should be targeted above others to optimize conservation 

opportunities. These baseline models are integral in conservation planning for a region 

because they can be used to assess the current status of a species, and provide guidance 

for future conservation direction. Thus, the next step for grassland bird conservation is 

utilizing these high-quality data to explicitly inform and prioritize future conservation 

efforts.  
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APPENDIX III 

Table 3.1 Species of interest and their North American Breeding Bird Survey trend information for the Central Hardwoods Bird 

Conservation Region with information from Partners in Flight priority rankings. A management action of 1 represents high 

concern. 

CHBCR

BBS Trend

1980-2006 

Bell's Vireo (BEVI) Shrub 13.7 1 15 Y 3

Dickcissel (DICK) Grassland 1.3 5 13 N 4

Eastern Kingbird (EAKI) Grassland -2.1 6 16 Y Y 

Eastern Meadowlark (EAME) Grassland -2.6 10 15 Y Y 3

Field Sparrow (FISP) Shrub -2 22 17 Y Y 3

Grasshopper Sparrow (GRSP) Grassland -2.1 2 15 Y 2

Henslow's Sparrow (HESP) Grassland 6.2 18 18 Y Y 3

Northern Bobwhite (NOBO) Shrub -3.8 8 16 Y 3

Prairie Warbler (PRAW) Shrub -2.3 15 18 Y 3

Action
* 

1-critical recovery, 2-immediate action, 3-management attention, 4-planning and responsibility. 

Species Habitat % of population 

in CHBCR 

Regional 

Score - 

Breeding 

Regional 

Concern 

Species 

Regional 

Stewardship 

Species 
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Table 3.2 Akaiki’s Information Criterion adjusted for small sample sizes (AICc), for full model sets of multi-season occupancy model 

selection procedure results for occupancy (ψ), detection probability (p), and colonization probability (γ) of target species using 

roadside counts conducted from 2008–2012, with land-cover covariates, conservation and detection covariates in the Central 

Hardwoods Bird Conservation Region. 

BEVI AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

ψ(Year*GH*PR*PCON) Gamma(0) p(Year+Min+TOY) 4133.08 0 0.86 1 33

ψ(EW+Year*GH*PR) Gamma(0) p(Year+Min+TOY) 4138.34 5.26 0.06 0.07 31

ψ(Year*GH*PR) Gamma(0) p(Year+Min+TOY) 4138.65 5.57 0.05 0.06 30

ψ(Year*GH*PR*PCON) Gamma(0) p(Year+Min+TOY) 4140.21 7.14 0.02 0.03 33

ψ(Year*GH*PR*NCON) Gamma(0) p(Year+Min+TOY) 4143.56 10.48 0.00 0.01 33

ψ(Year*GH) Gamma(0) p(Year+Min+TOY) 4148.16 15.09 0.00 0.00 27

ψ(Year) Gamma(.) p(Year+Min+TOY) 4193.15 60.08 0 0 25

ψ(Eco) Gamma(0) p(Year+Min+TOY) 4208.96 75.88 0 0 25

ψ(Year) Gamma(.) p(Year+Min) 4213.06 79.98 0 0 19

ψ(Year) Gamma(Year) p(Year+Min) 4214.28 81.20 0 0 20

ψ(.) Gamma(.) p(Min) 4293.47 160.39 0 0 7

DICK AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

ψ(Eco+Year*DF*P+MPAR+PCON) Gamma(Eco+XP) p(Year+Min+Obs) 37782.88 0 0.84 1 66

ψ(Eco+Year89*DF*P+MPAR+PCON) Gamma(Eco+XP) p(Year+Min+Obs) 37787.77 4.89 0.07 0.09 63

ψ(Eco+Year*DF*P+MPAR+PCON) Gamma(Eco) p(Year+Min+Obs) 37788.71 5.83 0.05 0.05 65

ψ(Eco+Year*DF*P+MPAR+CON) Gamma(Eco) p(Year+Min+Obs) 37789.42 6.54 0.03 0.04 65

ψ(Eco+Year) Gamma(Year) p(Year+Min) 39132.52 1349.64 0 0 38

ψ(Eco) Gamma(Year) p(Year+Min) 39236.24 1453.36 0 0 33

ψ(Year) Gamma(Year) p(Year+Min) 40031.53 2248.65 0 0 34

ψ(Eco) Gamma(.) p(Min) 41172.06 3389.18 0 0 11
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Table #3.2 Continued. 

EAKI AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

ψ(Eco+Year*DF+P+CON) Gamma(Year) p(Year+Min+Obs) 13406.5897 0 0.28453 1 40

ψ(Eco+Year*DF*CON+P) Gamma(Year) p(Year+Min+Obs) 13406.701 0.1113 0.26912 0.9459 42

ψ(Eco+Year*DF+P) Gamma(Year) p(Year+Min+Obs) 13407.3176 0.7279 0.19772 0.6949 38

ψ(Eco+Year*DF+P+CON) Gamma(Year+XP) p(Year+Min+Obs) 13407.8047 1.215 0.15498 0.5447 41

ψ(Eco+Year*DF+P+PCON) Gamma(Year) p(Year+Min+Obs) 13408.8667 2.277 0.09113 0.3203 40

ψ(Eco+Year*DF+P+CON) Gamma(XP) p(Year+Min+Obs) 13416.2497 9.66 0.00227 0.008 40

ψ(Eco+Year+DF+P+CON) Gamma(Year) p(Year+Min+Obs) 13420.8466 14.2569 0.00023 0.0008 38

ψ(EW+Year*DF+P+CON) Gamma(Year) p(Year+Min+Obs) 13427.4606 20.8709 0.00001 0 36

EAME AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

ψ(Eco+Year*P+MDF+CON) Gamma(Eco) p(Year+Min+Obs) 44367.7166 0 1 1 50

ψ(Eco+Year*P+MDF) Gamma(Eco) p(Year+Min+Obs) 44474.0871 106.3705 0 0 47

ψ(Eco+Year*P*CON+MDF+MPAR) Gamma(Eco) p(Year+Min+Obs) 44497.9629 130.2463 0 0 52

ψ(Eco+Year+MDF) Gamma(Eco) p(Year+Min+Obs) 44507.0425 139.3259 0 0 45

ψ(Year*P+MDF) Gamma(Eco) p(Year+Min+Obs) 44510.4235 142.7069 0 0 45

ψ(Eco+Year) Gamma(Eco) p(Year+Min) 46360.9641 1993.2475 0 0 33

ψ(Eco) Gamma(Eco) p(Year+Min) 46455.6217 2087.9051 0 0 30

ψ(Eco+Year) Gamma(Eco+Year) p(Year+Min) 46474.9264 2107.2098 0 0 34

ψ(Eco+Year) Gamma(Year) p(Year+Min) 46531.2814 2163.5648 0 0 29

ψ(Year) Gamma(Year) p(Year+Min) 46727.2553 2359.5387 0 0 26

ψ(Year) Gamma(Eco) p(Year+Min) 46909.5765 2541.8599 0 0 28

FISP AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

ψ(Eco+Year*P+CR+MDF+NCON) Gamma(Year) p(Year+Min+Obs) 48519.1735 0 0.5012 1 57

ψ(Eco+Year*P+CR+MDF+CON) Gamma(Year) p(Year+Min+Obs) 48520.0575 0.884 0.32215 0.6428 57

ψ(Eco+Year*P+CR+MDF) Gamma(Year) p(Year+Min+Obs) 48521.2593 2.0858 0.17664 0.3524 56

ψ(Eco+Year*P+CR) Gamma(Year) p(Year+Min+Obs) 48539.6994 20.5259 0.00002 0 55

ψ(Eco+Year) Gamma(Year) p(Year+Min+Obs) 48665.3501 146.1766 0 0 49

ψ(Eco+Year) Gamma(Eco+Year) p(Year+Min) 49072.5033 553.3298 0 0 35

ψ(Year) Gamma(Year) p(Year+Min) 49083.5349 564.3614 0 0 32

ψ(Eco) Gamma(Eco) p(Year+Min) 49128.0153 608.8418 0 0 30

ψ(Eco+Year) Gamma(Eco+Year) p(Min) 49164.1114 644.9379 0 0 18
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Table #3.2 Continued. 

GRSP AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

ψ(Year*P*MPAR*CON) Gamma(Eco) p(Year+MIN+Obs) 15297.7817 0 0.64698 1 65

ψ(Year*P*MPAR*CON) Gamma(.) p(Year+MIN+Obs) 15299.2597 1.478 0.30899 0.4776 61

ψ(Year89*P*MPAR*CON) Gamma(Eco) p(Year+MIN+Obs) 15303.157 5.3753 0.04402 0.068 55

ψ(Year*P*CON) Gamma(Eco) p(Year+MIN+Obs) 15331.2238 33.4421 0 0 60

ψ(Eco+P+MPAR+CON) Gamma(Eco) p(Year+MIN+Obs) 15333.3165 35.5348 0 0 52

ψ(Eco) Gamma(Yr) p(Year+Min+TOY) 15820.1175 522.3358 0 0 41

ψ(Eco) Gamma(Eco) p(Year+Min) 15845.4734 547.6917 0 0 33

ψ(Yr) Gamma(.) p(Year+Min+TOY) 15878.1715 580.3898 0 0 41

ψ(Eco+Year) Gamma(.) p(Year+Min) 15901.1732 603.3915 0 0 35

ψ(Yr) Gamma(Yr) p(Year+Min+TOY) 16097.3938 799.6121 0 0 39

ψ(Year) Gamma(Year) p(Year+Min) 16102.6076 804.8259 0 0 31

HESP AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

ψ(Year+MP+PCON) Gamma(Year) p(Min) 3242.5547 0 0.49105 1 15

ψ(Year+MP+CON) Gamma(Year) p(Min) 3243.8376 1.2829 0.25855 0.5265 16

ψ(Year+MP) Gamma(Year) p(Min) 3243.9046 1.3499 0.25003 0.5092 15

ψ(Year+MP) Gamma(.) p(Min) 3259.022 16.4673 0.00013 0.0003 12

ψ(Year+MP+CON) Gamma(.) p(Min) 3259.3998 16.8451 0.00011 0.0002 13

ψ(Year+NCON) Gamma(.) p(Min) 3261.331 18.7763 0.00004 0.0001 12

ψ(Year+CON) Gamma(.) p(Min) 3261.383 18.8283 0.00004 0.0001 12

ψ(Year) Gamma(.) p(Min) 3261.4775 18.9228 0.00004 0.0001 11

ψ(Year) Gamma(.) p(Min) 3261.4775 18.9228 0.00004 0.0001 11

ψ(Year) Gamma(0) p(Min) 3265.5701 23.0154 0 0 10

ψ(.) Gamma(.) p(.) 3378.0241 135.4694 0 0 3

ψ(Year+P+PCON) Gamma(Year) p(Min) 3379.3259 136.7712 0 0 13

ψ(Year+MP+PCON) Gamma(Year+XP) p(Min) 3381.0006 138.4459 0 0 13

ψ(Year+MP+NCON) Gamma(Year) p(Min) 3400.9566 158.4019 0 0 10

ψ(Year+DF+PCON) Gamma(Year) p(Min) 3406.9172 164.3625 0 0 15

ψ(Year+MP) Gamma(89) p(Min) 3412.6046 170.0499 0 0 12

ψ(Year+MP+PCON) Gamma(Year89) p(Min) 3448.8002 206.2455 0 0 8
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Table #3.2 Continued. 

NOBO AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

ψ(Eco+Year89*MDF*P+NCON) Gamma(Eco) p(Year+Min+Obs) 35652.5803 0 0.6433 1 62

ψ(Eco+Year*MDF*P+NCON) Gamma(Eco) p(Year+Min+Obs) 35654.7331 2.1528 0.21925 0.3408 65

ψ(Eco+Year*MDF*P+NCON+PR) Gamma(Eco) p(Year+Min+Obs) 35656.5936 4.0133 0.08648 0.1344 66

ψ(Eco+Year*MDF*P*NCON) Gamma(Eco) p(Year+Min+Obs) 35657.6514 5.0711 0.05096 0.0792 69

ψ(Eco+Year*MDF*P+PCON) Gamma(Eco) p(Year+Min+Obs) 35717.3881 64.8078 0 0 65

ψ(Eco+Year*MDF*P) Gamma(Eco) p(Year+Min+Obs) 35718.2759 65.6956 0 0 64

ψ(Eco+Year) Gamma(Eco) p(Year+Min+Obs) 36075.0388 422.4585 0 0 54

ψ(Eco+Year) Gamma(.) p(Year+Min) 36492.8043 840.224 0 0 35

ψ(Eco) Gamma(Eco) p(Year+Min) 36543.9313 891.351 0 0 35

ψ(.) Gamma(.) p(Year+Min) 36640.9887 988.4084 0 0 27

ψ(Eco+Year) Gamma(Year) p(Year+Min) 36679.2293 1026.649 0 0 35

ψ(Year) Gamma(Year) p(Year+Min) 36696.7356 1044.1553 0 0 34

ψ(Year) Gamma(Eco+Year) p(Year+Min) 36932.8433 1280.263 0 0 35

PRAW AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

ψ(Year+MDF+TE+MGH) Gamma(.) p(Year+Min+TOY) 8335.2267 0 0.93486 1 43

ψ(Year89+MDF+TE+MGH) Gamma(.) p(Year+Min+TOY) 8340.8265 5.5998 0.05685 0.0608 41

ψ(DF+MGH) Gamma(.) p(Year+Min+TOY) 8346.7165 11.4898 0.00299 0.0032 39

ψ(Year+DF+TE+GH) Gamma(.) p(Year+Min+TOY) 8346.9895 11.7628 0.00261 0.0028 44

ψ(DF+MGH+PCON) Gamma(.) p(Year+Min+TOY) 8348.319 13.0923 0.00134 0.0014 40

ψ(DF+MGH+CON) Gamma(.) p(Year+Min+TOY) 8348.4902 13.2635 0.00123 0.0013 40

ψ(Year+DF) Gamma(.) p(Year+Min+TOY) 8397.2201 61.9934 0 0 42

ψ(Year+MDF+TE+MGH+NCON) Gamma(.) p(Year+Min+TOY) 8645.2514 310.0247 0 0 44

ψ(Year) Gamma(Year) p(Year+Min+TOY) 8881.6339 546.4072 0 0 39

ψ(Year) Gamma(Year) p(Year+Min) 8932.6064 597.3797 0 0 32

ψ(Eco) Gamma(Eco) p(Year+Min) 9155.4075 820.1808 0 0 30  

aCON = conservation, CR = corn, DF = deciduous forest, Eco = ecoregions, GH = grassland herbaceous, MPAR = mean  
perimeter-to-area ratio, MDF = maximum deciduous forest size (ha), MGH = maximum grassland herbaceous size (ha), MP = 
maximum pasture size (ha), NCON = distance to nearest conservation (km), P = pasture, PCON = presence of conservation, TE = total 
edge
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Table 3.3 Descriptions of cover types included as covariates in multi-season occupancy and abundance analyses from the Central 

Hardwoods Bird Conservation Region. 

Cover Type

Pasture Grass/Pasture Hay (P)
Areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay 

crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20 percent of total vegetation

Shrubland (S)
Areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20 percent of total 

vegetation. This class includes true shrubs, young trees in an early successional 

Open Water (OW) All areas of open water, generally with less than 25 percent cover of vegetation or soil

Description

Evergreen Forest (EV)
Areas dominated by trees generally greater than 5 meters tall, and greater than 20 percent of total vegetation cover. 

More than 75 percent of the tree species maintain their leaves all year 

Grassland Herbaceous (GH)
Areas dominated by grammanoid or herbaceous vegetation, generally greater than 80 percent of total vegetation. 

These areas are not subject to intensive management such as tilling, but can be utilized for grazing

Deciduous Forest (DF)
Areas dominated by trees generally greater than 5 meters tall, and greater than 20 percent of total vegetation cover.  

More than 75 percent of the tree species shed foliage simultaneously in response to seasonal change

Developed Low Intensity (DLI)
Includes areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20–49 

percent of total cover. These areas most commonly include single-family housing units

Developed Open Space (DOS)
Includes areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. 

Impervious surfaces account for less than 20 percent of total cover
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Table 3.4 Akaiki’s Information Criterion adjusted for small sample sizes (AICc), for model sets 

of multinomial Poisson models for abundance (a) and detection probability (p) of target species 

using roadside counts conducted from 2008–2012, with land-cover covariates, conservation, and 

detection covariates in the Central Hardwoods Bird Conservation Region. 

BEVI AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

a(NumP+GH) p(.) 2051.29 0 0.17 1 16

a(NumP+MGH) p(.) 2051.42 0.13 0.16 0.94 16

a(MPAR+GH) p(.) 2051.52 0.23 0.15 0.89 16

a(.) p(Obs) 2051.71 0.43 0.14 0.81 14

a(NumP+Con) p(.) 2052.22 0.93 0.11 0.63 16

a(MPAR+GH+Con) p(.) 2053.00 1.71 0.07 0.43 17

a(NumP+GH+Con) p(.) 2053.14 1.85 0.07 0.40 17

a(NumP+MGH+Con) p(.) 2053.27 1.98 0.06 0.37 17

a(MPAR+MGH+Con) p(.) 2053.51 2.22 0.06 0.33 17

a(.) p(.) 2056.61 5.33 0.01 0.07 2

DICK AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

a(DF+P+Yr) p(Obs+DOY) 40929.93 0 0.46 1 27

a(DF+P+Yr+PCon) p(Obs+DOY) 40931.48 1.55 0.21 0.46 28

a(DF+P+Yr+Ncon) p(Obs+DOY) 40931.95 2.02 0.17 0.36 28

a(DF+P+Yr+Con) p(Obs+DOY) 40932.22 2.29 0.15 0.32 28

a(DF+P+ECO) p(Obs+DOY) 40939.56 9.63 0 0 28

a(DF+P) p(Obs+DOY) 40939.20 9.27 0 0 24

a(DF) p(Obs+DOY) 40945.31 15.38 0 0 23

a(MDF) p(Obs+DOY) 40971.42 41.49 0 0 23

a(P) p(Obs+DOY) 41054.40 124.47 0 0 23

a(Yr) p(Obs+DOY) 41057.64 127.71 0 0 25

a(MP) p(Obs+DOY) 41060.33 130.40 0 0 23

a(Pcon) p(Obs+DOY) 41066.23 136.30 0 0 23

a(.) p(Obs+DOY) 41066.08 136.15 0 0 22

a(ECO) p(Obs+DOY) 41067.66 137.73 0 0 26

a(Ncon) p(Obs+DOY) 41068.15 138.22 0 0 23

a(Con) p(Obs+DOY) 41068.24 138.31 0 0 23

a(.) p(.) 41605.25 675.32 0 0 2

EAKI AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

a(Yr) p(Obs+DOY) 8763.88 0 0.48 1 17

a(Yr+MGH) p(Obs+DOY) 8765.65 1.77 0.20 0.41 18

a(Yr+Con) p(Obs+DOY) 8766.09 2.21 0.16 0.33 18

a(Yr+MGH+MPAR) p(Obs+DOY) 8767.03 3.15 0.10 0.21 19

a(Yr+MGH+Con) p(Obs+DOY) 8767.88 4.00 0.06 0.14 19

a(.) p(Obs+DOY) 8777.24 13.36 0 0 15

a(MGH) p(Obs+DOY) 8778.59 14.71 0 0 16

a(NCON) p(Obs+DOY) 8778.73 14.85 0 0 16

a(SS) p(Obs+DOY) 8778.78 14.90 0 0 16

a(CON) p(Obs+DOY) 8779.44 15.56 0 0 16

a(ECO) p(Obs+DOY) 8781.99 18.11 0 0 19

a(ECO+MGH) p(Obs+DOY) 8783.09 19.21 0 0 20

a(.) p(.) 8823.89 60.01 0 0 2
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Table #3.4 Continued. 

EAME AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

a(Yr+P+MDF+NCON) p(Obs+DOY) 47933.74 0 0.60 1 24

a(Yr+P+MDF) p(Obs+DOY) 47935.36 1.62 0.27 0.45 23

a(ECO+P+MDF+NCON) p(Obs+DOY) 47938.29 4.55 0.06 0.10 25

a(ECO+P+MDF) p(Obs+DOY) 47938.13 4.39 0.07 0.11 24

a(Yr+P) p(Obs+DOY) 47962.74 29.00 0 0 22

a(P+MDF) p(Obs+DOY) 47976.78 43.04 0 0 20

a(P) p(Obs+DOY) 48014.10 80.36 0 0 19

a(ECO) p(Obs+DOY) 48101.58 167.84 0 0 22

a(Yr+MDF) p(Obs+DOY) 48103.79 170.05 0 0 22

a(MDF) p(Obs+DOY) 48108.97 175.23 0 0 19

a(NCON) p(Obs+DOY) 48165.10 231.36 0 0 19

a(Yr) p(Obs+DOY) 48167.61 233.87 0 0 21

a(.) p(Obs+DOY) 48176.80 243.06 0 0 18

a(CON) p(Obs+DOY) 48177.65 243.91 0 0 19

a(PCON) p(Obs+DOY) 48178.06 244.32 0 0 19

a(.) p(.) 48818.89 885.15 0 0 2

FISP AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

a(ECO+DF+GH+TE) p(Obs+DOY) 52296.30 0 0.52 1 29

a(ECO+DF+GH+TE+PCon) p(Obs+DOY) 52298.65 2.35 0.16 0.31 30

a(ECO+DF+GH+TE+Con) p(Obs+DOY) 52298.67 2.37 0.16 0.31 30

a(ECO+DF+GH+TE+NCON) p(Obs+DOY) 52298.67 2.37 0.16 0.31 30

a(DF+GH+TE) p(Obs+DOY) 52308.22 11.92 0 0 25

a(DF+GH+TE+NCON) p(Obs+DOY) 52309.10 12.80 0 0 26

a(DF+GH+TE+Pcon) p(Obs+DOY) 52310.54 14.24 0 0 26

a(DF+GH+TE+Con) p(Obs+DOY) 52310.54 14.24 0 0 26

a(DF+GH) p(Obs+DOY) 52311.86 15.56 0 0 24

a(DF+MP+TE) p(Obs+DOY) 52312.71 16.41 0 0 25

a(DF+MP+TE+Con) p(Obs+DOY) 52315.02 18.72 0 0 26

a(MDF+GH+TE+Con) p(Obs+DOY) 52315.54 19.24 0 0 26

a(MDF+MP+TE+Con) p(Obs+DOY) 52320.13 23.83 0 0 26

a(DF) p(Obs+DOY) 52320.49 24.19 0 0 23

a(MP+GH) p(Obs+DOY) 52321.50 25.20 0 0 24

a(.) p(Obs+DOY) 52340.68 44.38 0 0 22

a(.) p(.) 53028.74 732.44 0 0 2

GRSP AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

a(Yr) p(Obs+DOY) 11387.03 0 0.29 1 24

a(YR+DF) p(Obs+DOY) 11387.27 0.24 0.25 0.89 25

a(YR+GH) p(Obs+DOY) 11388.05 0.78 0.19 0.68 25

a(YR+DF+NCON) p(Obs+DOY) 11388.89 1.62 0.13 0.44 26

a(Yr+MP) p(Obs+DOY) 11389.32 2.05 0.10 0.36 25

a(.) p(Obs+DOY) 11391.48 4.22 0.03 0.12 21
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Table #3.4 Continued. 

HESP AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

a(P) p(Yr+DOY) 1708.35 0 0.36 1 7

a(.) p(Yr+DOY) 1709.63 1.27 0.19 0.53 6

a(P+Msoy) p(Yr+DOY) 1710.22 1.86 0.14 0.39 8

a(MP+NCON) p(Yr+DOY) 1710.83 2.47 0.10 0.29 8

a(MP+DOS) p(Yr+DOY) 1710.84 2.48 0.10 0.29 8

a(MP+Soy+NCON) p(Yr+DOY) 1712.22 3.86 0.05 0.14 9

a(P+Msoy+NCON) p(Yr+DOY) 1712.26 3.90 0.05 0.14 9

NOBO AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

a(Yr+MPAR+MGH+DF) p(Obs+DOY) 33396.61 0 0.28 1 28

a(Yr+MPAR+MGH+DF+NCON) p(Obs+DOY) 33396.64 0.03 0.27 0.98 29

a(Yr+MPAR+MGH+DF+CON) p(Obs+DOY) 33397.55 0.91 0.18 0.63 29

a(Yr+MPAR+MGH+DF+PCON) p(Obs+DOY) 33398.27 1.63 0.12 0.44 29

a(Yr+MGH+DF+NCON) p(Obs+DOY) 33398.21 1.57 0.13 0.46 28

a(Yr+MPAR+DF+NCON) p(Obs+DOY) 33403.73 7.09 0.01 0.03 28

a(Yr+MPAR+DF) p(Obs+DOY) 33403.73 7.09 0.01 0.03 27

a(Yr+MPAR+DF+CON) p(Obs+DOY) 33404.69 8.05 0 0.02 28

a(Yr+MPAR+DF+PCON) p(Obs+DOY) 33405.41 8.77 0 0.01 28

a(Yr+MPAR+MP+DF+NCON) p(Obs+DOY) 33405.88 9.24 0 0.01 29

a(Yr+MPAR+MP+NCON) p(Obs+DOY) 33416.58 19.94 0 0 28

a(Yr) p(Obs+DOY) 33416.52 19.88 0 0 25

a(ECO) p(Obs+DOY) 33500.92 104.28 0 0 26

a(.) p(Obs+DOY) 33503.41 106.77 0 0 22

PRAW AICc ∆AICc AICc  Wt Model Likelihood No. of Parameters

a(Yr+MDF) p(Yr) 5089.79 0 0.19 1 9

a(Yr+DF) p(Yr) 5090.46 0.67 0.14 0.72 9

a(Yr+MDF+PCON) p(Yr) 5091.04 1.25 0.10 0.53 10

a(ECO+MDF) p(Yr) 5091.94 2.15 0.07 0.34 10

a(Yr) p(Yr) 5092.03 2.24 0.06 0.33 8

a(Yr+GH) p(Yr) 5092.26 2.47 0.06 0.29 9

a(Yr+MGH) p(Yr) 5092.51 2.72 0.05 0.26 9

a(ECO) p(Yr) 5092.65 2.86 0.05 0.24 9

a(Yr+PCON) p(Yr) 5093.05 3.26 0.04 0.20 9

a(Yr+P) p(Yr) 5093.11 3.32 0.04 0.19 9

a(Yr+SS) p(Yr) 5093.17 3.38 0.04 0.18 9

a(Yr+MPAR) p(Yr) 5093.27 3.48 0.03 0.18 9

a(Yr+MP) p(Yr) 5093.27 3.48 0.03 0.18 9

a(Yr+CON) p(Yr) 5093.40 3.61 0.03 0.16 9

a(Yr+NCON) p(Yr) 5093.81 4.02 0.03 0.13 9

a(Yr+TE) p(Yr) 5093.82 4.03 0.03 0.13 9

a(MDF) p(Yr) 5094.38 4.59 0.02 0.10 6

a(.) p(Yr) 5095.40 5.61 0.01 0.06 5  
aCON = conservation, CR = corn, DF = deciduous forest, DOS = developed open space, ECO = 
ecoregion, GH = grassland herbaceous, MPAR = mean perimeter-to-area ratio, MDF = 
maximum deciduous forest size (ha), MGH = maximum grassland herbaceous size (ha), MP = 
maximum pasture size (ha), P = pasture, MSoy = maximum soy size (ha), NCON = distance to 
nearest conservation (km), PCON = presence of conservation, SS= scrub-shrub, Soy = soy, TE = 
total edge. 
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Table 3.5 Pearson’s correlation coefficient for the amount of conservation cover and percent of 

land-cover type from points in the CHBCR for each year (2008/2009, n = 92; 2010, n = 231; 

2011, n = 229; 2012, n = 334). 

Cover Type 2008/2009 2010 2011 2012

CR -0.03 -0.21 0.02 -0.11

DF 0.01 0.01 -0.05 -0.04

DLI -0.12 0.00 -0.08 -0.03

DOS -0.18 -0.11 -0.03 -0.10

GH 0.11 0.00 -0.01 0.00

P 0.22 0.13 0.12 0.19

SOY -0.17 -0.10 -0.12 -0.04   
aCR = corn, DF = deciduous forest, DLI = developed low intensity, DOS = developed open 
space, GH = grassland herbaceous, P = pasture, SOY = soy  
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Table 3.6 Species specific detection probability (p) from top multi-season occupancy models. 

Estimates were generated using mean covariate values from roadside surveys conducted from 

May 15 to July 15, 2008–2012. Observers and points surveyed by observers differed among 

years with the exception of one observer (see text).  

BEVI 2008/2009 2010 2011 2012

Interval 1 0.032 0.135 0.192

Interval 2 0.053 0.147 0.147

Interval 3 0.129 0.260 0.134

DICK 2008/2009 2010 2011 2012

Observer1 0.63 0.71 0.48 0.89

Observer2 0.83 0.50 0.73 0.88

Observer3 0.53 0.48 0.59 0.31

Observer4 0.25 0.25 0.45 0.82

Observer5 0.71 0.23 0.90

Observer6 0.32

EAKI 2008/2009 2010 2011 2012

Observer1 0.24 0.44 0.33

Observer2 0.07 0.16 0.27

Observer3 0.14 0.11 0.16

Observer4 0.15 0.08 0.30

Observer5 0.07 0.18

EAME 2008/2009 2010 2011 2012

Observer1 0.64 0.74 0.74 0.83

Observer2 0.60 0.41 0.66 0.41

Observer3 0.76 0.72 0.42

Observer4 0.63 0.15 0.54

Observer5 0.62 0.28

FISP 2008/2009 2010 2011 2012

Observer1 0.53 0.45 0.59 0.46

Observer2 0.40 0.34 0.59 0.53

Observer3 0.63 0.52 0.54 0.42

Observer4 0.73 0.61 0.36 0.49

Observer5 0.46 0.47 0.46

Observer6 0.72
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Table #3.6 Continued. 

GRSP 2008/2009 2010 2011 2012

Observer1 0.37 0.32 0.10 0.47

Observer2 0.60 0.20 0.18 0.37

Observer3 0.40 0.18 0.32 0.15

Observer4 0.24 0.27 0.35 0.21

Observer5 0.36 0.07 0.27

Observer6 0.39

HESP AllYears

AllObservers 0.24

NOBO 2008/2009 2010 2011 2012

Observer1 0.60 0.28 0.35 0.47

Observer2 0.38 0.37 0.69 0.77

Observer3 0.51 0.45 0.55 0.26

Observer4 0.37 0.22 0.33 0.62

Observer5 0.54 0.41 0.62

Observer6 0.35

PRAW AllYears

Interval 1 0.33

Interval 2 0.28

Interval 3 0.19  
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Table 3.7 Beta values and confidence intervals for species and covariates of top models from 

multi-season occupancy model selection results. Blank spaces indicate that a model effects were 

additive, and thus the same for successive years. 

2008 LCI UCI 2009 LCI UCI 2010 LCI UCI 2011 LCI UCI 2012 LCI UCI

BEVI NS NS NS NS NS NS 1.542 0.240 2.844 -0.367 -1.116 0.383 -2.399 -3.071 -1.726

GH NS NS NS NS NS NS -42.610 -96.328 11.108 3.310 0.517 6.103 14.763 8.556 20.970

PR NS NS NS NS NS NS -0.100 -0.278 0.078 0.142 0.070 0.214 0.095 -0.006 0.195

PCON NS NS NS NS NS NS 0.137 -1.206 1.480 -0.778 -1.648 0.092 1.021 0.365 1.678

2008 LCI UCI 2009 LCI UCI 2010 LCI UCI 2011 LCI UCI 2012 LCI UCI

DICK -0.056 -0.385 0.274 -0.044 -0.617 0.529 0.539 0.290 0.787 0.553 0.367 0.739 0.642 0.363 0.921

DF -3.317 -4.098 -2.537 -2.342 -3.211 -1.473 -2.725 -3.183 -2.267 -2.697 -3.065 -2.328 -2.191 -2.552 -1.829

P 2.082 1.295 2.868 2.053 1.317 2.790 1.338 0.908 1.767 0.075 -0.248 0.398 0.794 0.522 1.065

MPAR -3.550 -5.927 -1.174

PCON 0.178 0.007 0.349

OH -0.283 -0.467 -0.098

CIP 2.542 1.376 3.708

ECP -2.754 -3.232 -2.276

IP -1.198 -1.349 -1.047

2008 LCI UCI 2009 LCI UCI 2010 LCI UCI 2011 LCI UCI 2012 LCI UCI

EAKI NS NS NS NS NS NS 2.657 1.345 3.968 0.025 -0.544 0.595 -1.723 -2.159 -1.287

DF NS NS NS NS NS NS -3.604 -5.935 -1.273 -1.823 -2.777 -0.869 -0.044 -0.752 0.664

P NS NS NS NS NS NS 2.146 1.596 2.697

CON NS NS NS NS NS NS 0.029 -0.003 0.062

OH NS NS NS NS NS NS 0.416 -0.055 0.887

CIP NS NS NS NS NS NS 0.385 -0.444 1.214

ECP NS NS NS NS NS NS -3.363 -5.778 -0.947

IP NS NS NS NS NS NS 0.827 0.468 1.187

2008 LCI UCI 2009 LCI UCI 2010 LCI UCI 2011 LCI UCI 2012 LCI UCI

EAME NS NS NS 2.061 1.663 2.459 0.992 0.722 1.263 0.718 0.459 0.977 -0.152 -0.386 0.081

P NS NS NS 0.940 0.415 1.464 1.330 0.927 1.732 0.936 0.613 1.258 2.397 1.901 2.892

MDF NS NS NS -0.318 -0.346 -0.291

CON NS NS NS 0.006 -0.003 0.015

OH NS NS NS 0.653 0.414 0.892

CIP NS NS NS -0.532 -0.922 -0.141

ECP NS NS NS -0.031 -0.425 0.364

IP NS NS NS 0.535 0.362 0.708

2008 LCI UCI 2009 LCI UCI 2010 LCI UCI 2011 LCI UCI 2012 LCI UCI

FISP 2.266 1.667 2.864 1.732 0.982 2.482 2.075 1.611 2.539 1.306 0.876 1.736 -0.101 -0.509 0.308

P 0.007 -1.350 1.363 0.287 -0.733 1.307 -0.521 -1.104 0.063 0.752 0.163 1.342 14.062 6.785 21.339

CR -0.392 -0.851 0.068

MDF 0.169 0.073 0.266

NCON -0.062 -0.121 -0.003

OH -0.571 -0.921 -0.220

CIP 0.233 -0.452 0.917

ECP 0.551 -0.273 1.375

IP 0.145 -0.122 0.413

2008 LCI UCI 2009 LCI UCI 2010 LCI UCI 2011 LCI UCI 2012 LCI UCI

GRSP -0.155 -1.208 0.898 -1.682 -1.743 -1.620 2.485 2.238 2.731 0.500 0.387 0.612 -0.863 -0.910 -0.816

P 2.042 1.370 2.713 3.094 2.704 3.483 1.561 1.105 2.016 0.341 -0.076 0.758 2.441 1.917 2.965

MPAR -11.891 -19.869 -3.913 7.831 7.705 7.956 -25.316 -27.475 -23.157 -9.663 -10.619 -8.708 -9.471 -12.532 -6.411

CON -0.052 -0.072 -0.032 0.001 0.000 0.002 0.002 -0.017 0.020 0.038 0.005 0.070 0.001 -0.012 0.014

2008 LCI UCI 2009 LCI UCI 2010 LCI UCI 2011 LCI UCI 2012 LCI UCI

HESP 0.542 0.026 1.058 -0.526 -1.398 0.345 0.135 -0.262 0.533 1.039 0.701 1.377 -3.487 -3.957 -3.017

MP 0.057 0.006 0.109

PCON 0.297 -0.205 0.799
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Table #3.7 Continued. 

2008 LCI UCI 2009 LCI UCI 2010 LCI UCI 2011 LCI UCI 2012 LCI UCI

NOBO 1.529 1.451 1.606 1.529 1.451 1.606 1.337 0.948 1.726 1.345 1.253 1.436 0.043 0.018 0.067

MDF -0.276 -0.285 -0.267 -0.276 -0.285 -0.267 -0.286 -0.374 -0.199 -0.302 -0.315 -0.289 -0.183 -0.187 -0.178

P 0.529 0.246 0.812 0.529 0.246 0.812 0.269 -0.311 0.850 -0.188 -0.502 0.127 0.912 0.780 1.045

NCON -0.187 -0.199 -0.175

OH 0.062 0.009 0.114

CIP 0.975 0.506 1.443

ECP -0.867 -1.236 -0.497

IP -0.141 -0.288 0.006

2008 LCI UCI 2009 LCI UCI 2010 LCI UCI 2011 LCI UCI 2012 LCI UCI

PRAW -0.500 -0.530 -0.469 0.170 0.165 0.175 -0.189 -0.335 -0.042 -0.507 -0.677 -0.337 -2.913 -2.923 -2.903

MDF 0.277 0.242 0.313

TE 1.419 1.116 1.721

MGH 2.209 1.253 3.166
aCON = conservation, CR = corn, DF = deciduous forest, GH = grassland herbaceous, MPAR = 
mean perimeter-to-area ratio, MDF = maximum deciduous forest size (ha), MGH = maximum 
grassland herbaceous size (ha), MP = maximum pasture size (ha), NCON = distance to nearest 
conservation, NS = not surveyed, P = pasture, PCON = presence of conservation, TE = total 
edge. 
bOH = Ozark Highlands, CIP = Central Irregular Plains, ECP = Eastern Corn Belt Plains, IP = 
Interior Plateau.
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Table 3.8 Species specific occupancy (ψ) estimates and standard errors (SE) from top models 

from multi-season occupancy models. Estimates were generated using mean covariate values 

from roadside surveys conducted from May 15 to July 15, 2008–2012.  

BEVI 2008 SE 2009 SE 2010 SE 2011 SE 2012 SE

CHBCR NS NS NS NS 0.155 0.034 0.100 0.014 0.141 0.025

DICK 2008 SE 2009 SE 2010 SE 2011 SE 2012 SE

OZH NS NS 0.584 0.053 0.636 0.022 0.607 0.023 0.497 0.017

CIP NS NS 0.959 0.024 0.967 0.019 0.963 0.021 0.943 0.032

ECP 0.097 0.023 NS NS 0.129 0.028 0.115 0.025 0.077 0.017

IP 0.338 0.028 NS NS 0.412 0.021 0.382 0.018 0.284 0.013

IRVH 0.628 0.028 NS NS 0.699 0.018 0.672 0.016 0.568 0.015

EAKI 2008 SE 2009 SE 2010 SE 2011 SE 2012 SE

OZH NS NS NS NS 0.815 0.074 0.303 0.063 0.410 0.063

CIP NS NS NS NS 0.810 0.092 0.297 0.096 0.403 0.110

ECP NS NS NS NS 0.091 0.098 0.010 0.012 0.016 0.019

IP NS NS NS NS 0.869 0.056 0.396 0.042 0.512 0.061

IRVH NS NS NS NS 0.744 0.089 0.223 0.035 0.314 0.046

EAME 2008 SE 2009 SE 2010 SE 2011 SE 2012 SE

OZH NS NS 0.920 0.013 0.812 0.016 0.746 0.023 0.730 0.022

CIP NS NS 0.778 0.036 0.569 0.045 0.473 0.048 0.453 0.050

ECP NS NS NS NS 0.686 0.043 0.597 0.048 0.577 0.050

IP NS NS NS NS 0.793 0.014 0.723 0.015 0.706 0.021

IRVH NS NS NS NS 0.692 0.018 0.604 0.019 0.585 0.024

FISP 2008 SE 2009 SE 2010 SE 2011 SE 2012 SE

OZH NS NS 0.754 0.055 0.794 0.025 0.716 0.035 0.995 0.007

CIP NS NS 0.872 0.049 0.896 0.033 0.849 0.044 0.998 0.003

ECP 0.939 0.025 NS NS 0.922 0.030 0.885 0.043 0.998 0.003

IP 0.911 0.014 NS NS 0.887 0.011 0.837 0.017 0.997 0.004

IRVH 0.898 0.018 NS NS 0.872 0.014 0.817 0.017 0.997 0.004

GRSP 2008 SE 2009 SE 2010 SE 2011 SE 2012 SE

CHBCR 0.270 0.076 0.128 0.004 0.480 0.026 0.295 0.014 0.325 0.026
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Table #3.8 Continued. 

HESP 2008 SE 2009 SE 2010 SE 2011 SE 2012 SE

CHBCR 0.054 0.015 0.019 0.009 0.039 0.008 0.091 0.017 0.036 0.007

NOBO 2008 SE 2009 SE 2010 SE 2011 SE 2012 SE

OZH NS NS 0.753 0.009 0.689 0.021 0.677 0.012 0.481 0.009

CIP NS NS 0.883 0.025 0.847 0.031 0.839 0.033 0.698 0.051

ECP 0.546 0.047 NS NS 0.452 0.051 0.453 0.047 0.268 0.037

IP 0.713 0.017 NS NS 0.644 0.024 0.631 0.017 0.431 0.019

IRVH 0.741 0.008 NS NS 0.676 0.021 0.664 0.011 0.465 0.007

PRAW 2008 SE 2009 SE 2010 SE 2011 SE 2012 SE

CHBCR 0.055 0.002 0.102 0.003 0.142 0.013 0.088 0.005 0.156 0.010  
aOH = Ozark Highlands, CIP = Central Irregular Plains, ECP = Eastern Corn Belt Plains, IP = 
Interior Plateau, IRVH = Interior River Valleys and Hills, NS = not surveyed.
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Table 3.9 Species specific colonization probability (γ) estimates with standard errors (SE) and confidence intervals from top models 

from multi-season occupancy models, excluding species where colonization was 0. Estimates were generated using mean covariate 

values from roadside surveys conducted from May 15 to July 15, 2008–2012. 

OZH SE CIP SE ECP SE IP SE IRVH SE

DICK 0.176 0.020 1.000 0.001 0.088 0.023 0.120 0.009 0.257 0.021

EAME 0.077 0.016 1.000 0.000 0.233 0.079 0.143 0.021 0.122 0.019

GRSP 0.138 0.005 0.135 0.006 0.306 0.019 0.065 0.015 0.051 0.002

NOBO 0.160 0.005 0.223 0.089 0.067 0.026 0.066 0.011 0.144 0.003

PRAW 0.06 0.00

Interval 1 SE Interval 2 SE Interval3 SE Interval 4 SE

EAKI 0.030 0.029 0.163 0.035

HESP 0.016 0.013 0.016 0.013 0.071 0.014 0.006 0.009  
aOH = Ozark Highlands, CIP = Central Irregular Plains, ECP = Eastern Corn Belt Plains, IP = Interior Plateau, IRVH = Interior River 
Valleys and Hills. 
bInterval 1 is colonization from 2008 to 2009, Interval 2 is colonization from 2009 to 2010, and Interval 3 is colonization from 2010 to 
2011, and Interval 3 is colonization from 2011 to 2012.
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Table 3.10 Species specific detection probability (p) from top multinomial-Poisson abundance 

models. Estimates were generated using mean covariate values from roadside surveys conducted 

from May 15 to July 15, 2008–2012. Species detection probabilities were greater than multi-

season occupancy modeling because probability a species is present (pp) is 1 when absences are 

not included in the analysis (Farnsworth et al. 2002). 

BEVI 2008/2009 2010 2011 2012

AllObservers 0.684

DICK 2008/2009 2010 2011 2012

Observer1 0.991 0.979 0.906 0.904

Observer2 0.979 0.988 0.963 0.907

Observer3 0.991 0.909 0.939 0.923

Observer4 0.959 0.997 0.898 0.997

Observer5 0.998 0.876 0.983

Observer6 0.987

EAKI 2008/2009 2010 2011 2012

Observer1 0.760 0.415 0.606

Observer2 0.751 0.348 0.634

Observer3 0.554 0.382 0.651

Observer4 0.815 0.448 0.802

Observer5 0.732 0.546

EAME 2008/2009 2010 2011 2012

Observer1 0.985 0.944 0.815 0.848

Observer2 0.825 0.944 0.877 0.889

Observer3 0.833 0.822 0.835

Observer4 0.995 0.739 0.992

Observer5 0.879 0.815

FISP 2008/2009 2010 2011 2012

Observer1 0.976 0.930 0.910 0.845

Observer2 0.899 0.973 0.876 0.887

Observer3 0.955 0.813 0.899 0.975

Observer4 0.967 0.999 0.857 0.993

Observer5 0.980 0.888 0.929

Observer6 0.925
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Table #3.10 Continued. 

GRSP 2008/2009 2010 2011 2012

Observer1 0.951 0.940 0.896 0.745

Observer2 0.897 0.986 0.954 0.834

Observer3 0.955 0.839 0.774 0.978

Observer4 0.949 0.985 0.865 0.976

Observer5 0.998 0.872 0.922

Observer6 0.955

HESP 2008/2009 2010 2011 2012

AllObservers 0.958 0.778 0.777 0.750

NOBO 2008/2009 2010 2011 2012

Observer1 0.950 0.825 0.757 0.758

Observer2 0.814 0.955 0.781 0.660

Observer3 0.953 0.838 0.773 0.741

Observer4 0.953 0.929 0.652 0.929

Observer5 0.953 0.909 0.745

Observer6 0.857

PRAW 2008/2009 2010 2011 2012

AllObservers 0.856 0.582 0.803 0.901  
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Table 3.11 Species specific abundance (a; individuals/point) estimates and standard errors (SE) from top models from multinomial 

Poisson models. Blank spaces represent a lack of annual differences in abundance. Estimates were generated using mean covariate 

values from roadside surveys conducted from May 15 to July 15, 2008–2012. 

Year 2008/2009 SE 2010 SE 2011 SE 2012 SE

BEVI 1.44 0.09

DICK 1.87 0.03 1.96 0.04 1.96 0.04 2.07 0.04

EAKI 1.39 0.06 1.94 0.14 1.65 0.08

EAME 1.92 0.03 1.96 0.04 1.76 0.04 1.60 0.05

GRSP 1.36 0.04 1.25 0.05 1.30 0.09 1.51 0.06

HESP 1.55 0.09

NOBO 1.47 0.05 1.44 0.04 1.71 0.05 1.79 0.05

PRAW 1.28 0.10 1.65 0.10 1.37 0.10 1.29 0.07

Eco OZH SE CIP SE ECP SE IP SE IRVH SE

FISP 1.40 0.03 1.30 0.08 1.51 0.08 1.54 0.02 1.45 0.02  
aOH = Ozark Highlands, CIP = Central Irregular Plains, ECP = Eastern Corn Belt Plains, IP = Interior Plateau, IRVH = Interior River 
Valleys and Hills.
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Table 3.12 Beta values, standard errors (SE) and confidence intervals for species and covariates 

of top models from multinomial-Poisson abundance model selection results.  

BEVI Estimate SE LCI UCI

Intercept 0.18 0.12 -0.04 0.41

NumP 0.01 0.01 0.00 0.02

GH 0.75 0.66 -0.55 2.05

DICK Estimate SE LCI UCI

Intercept 0.76 0.02 0.72 0.81

DF -0.75 0.07 -0.89 -0.61

P 0.09 0.03 0.03 0.15

2008/2009 -0.10 0.02 -0.15 -0.05

2010 -0.06 0.03 -0.11 -0.01

2011 -0.06 0.03 -0.11 0.00

EAKI Estimate SE LCI UCI

Intercept 0.50 0.05 0.41 0.59

2010 -0.17 0.06 -0.30 -0.05

2011 0.16 0.09 -0.01 0.33

EAME Estimate SE LCI UCI

Intercept 0.31 0.04 0.23 0.39

2010 0.18 0.03 0.12 0.25

2011 0.20 0.03 0.13 0.27

2012 0.10 0.03 0.03 0.16

P 0.43 0.03 0.37 0.50

MDF -0.03 0.01 -0.05 -0.02

NCON -0.01 0.01 -0.03 0.00

FISP Estimate SE LCI UCI

Intercept 0.28 0.04 0.20 0.35

OZH -0.04 0.03 -0.09 0.02

CIP -0.11 0.06 -0.23 0.02

ECP 0.04 0.06 -0.07 0.15

IP 0.06 0.02 0.02 0.10

DF 0.18 0.04 0.10 0.27

GH 0.63 0.22 0.19 1.07

TE 0.01 0.01 0.00 0.02
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Table #3.12 Continued. 

GRSP Estimate SE LCI UCI

Intercept 0.43 0.04 0.35 0.52

2008/2009 -0.11 0.05 -0.21 0.00

2010 -0.19 0.06 -0.31 -0.08

2011 -0.16 0.08 -0.31 -0.01

HESP Estimate SE LCI UCI

Intercept 0.29 0.11 0.08 0.50

P 0.35 0.19 -0.02 0.72

NOBO Estimate SE LCI UCI

Intercept 0.50 0.08 0.34 0.65

2008/2009 -0.20 0.05 -0.29 -0.11

2010 -0.22 0.04 -0.29 -0.15

2011 -0.04 0.04 -0.11 0.02

MPAR 0.16 0.08 0.00 0.31

MGH 0.10 0.03 0.04 0.16

DF -0.25 0.07 -0.38 -0.12

NCON -0.01 0.01 -0.03 0.00

PRAW Estimate SE LCI UCI

Intercept 0.19 0.07 0.06 0.32

2008/2009 -0.01 0.09 -0.20 0.17

2010 0.24 0.08 0.08 0.41

2011 0.06 0.09 -0.13 0.24

MDF 0.02 0.01 0.00 0.04  
aDF = deciduous forest, GH = grassland herbaceous, MPAR = mean perimeter-to-area ratio, 
MDF = maximum deciduous forest size (ha), MGH = maximum grassland herbaceous size (ha), 
NCON = distance to nearest conservation, P = pasture, TE = total edge. 
bOH = Ozark Highlands, CIP = Central Irregular Plains, ECP = Eastern Corn Belt Plains, IP = 
Interior Plateau. 
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Figure 3.1 Central Hardwoods Bird Conservation Region with focal counties for roadside 

surveys conducted from May—July, 2008-2012. 
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Figure 3.2 Example of five roadside survey routes conducted from May—July, 2008-

2012, in Sullivan County, IN in the Central Hardwoods Bird Conservation Region. 
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Figure 3.3 An example of a roadside route conducted in 2012 in Sullivan County, IN, in 

the Central Hardwoods Bird Conservation Region.  
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Figure 3.4 Total area (ha) of dominant conservation programs implemented and 

including a 1-year lag to allow for establishment, in the Central Hardwoods Bird 

Conservation Region. 

  



 

161 

 

 

Figure 3.5 Total area (ha) of dominant conservation practices implemented and including 

a 1-year lag to allow for establishment, in the Central Hardwoods Bird Conservation 

Region. 
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Figure 3.6 Dickcissel (Spiza americana) occupancy from 2009-2012 in the Ozark 

Highlands. Occupancy was estimated from the top model from multi-season occupancy 

modeling procedure for points with conservation (Yes Conservation) and points without 

conservation (No Conservation). 
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Figure 3.7 Northern Bobwhite (Colinus virginianus) occupancy from 2009-2012 in the 

Ozark Highlands. Occupancy was estimated from the top model from multi-season 

occupancy modeling procedure for points with conservation distance close to the point (0 

km) and points with conservation the average distance from the point (2 km).
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CONCLUSION 

Determining and accounting for factors affecting detection probabilities for Northern 

Bobwhite spring surveys is imperative for developing appropriate Northern Bobwhite 

monitoring schemes. Northern Bobwhite detection probability: 

1) Was positively related to the number of other conspecifics calling during a point 

count; 

2) Was negatively related to the minutes-since-sunrise when a point count was 

conducted; 

3) Was negatively related to the distance from an observer at which an individual 

bird was detected; 

4) Was unrelated to the presence of roads; and 

5) Was affected by observer ability. 

The ability to explicitly incorporate key factors listed above will improve population 

parameter estimation. This is the first comprehensive evaluation of factors affecting 

Northern Bobwhite detection probability, and the first time the effects of calling 

conspecifics on detection probability have been effectively modeled.  

Roadside-based surveys that incorporate detection probabilities for Bell’s Vireo, 

Dickcissel, Eastern Kingbird, Eastern Meadowlark, Field Sparrow, Grasshopper Sparrow, 

Henslow’s Sparrow, and Prairie Warbler can be used to continue to monitor new 

conservation implementation strategies. I demonstrated that: 

1) Relative abundance and vegetation cover dids not differ among on- and off-

road survey points; 
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2) Species occupancy and detection probability did not differ among on- and off-

road survey points; 

3) Land-cover covariates were more influential in determining species 

occupancy; and 

4) Temporal covariates were more influential than whether a point was located 

on or off-road, in determining species detection probability. 

Similarly, species-specific occupancy estimates were more influenced by land-

cover and land-heterogeneity covariates than the presence of secondary roads. These 

land-cover variables can be easily collected and accounted for during roadside surveys, 

and should be used in a hierarchical modeling framework to improve accuracy of 

occupancy and abundance estimates for these species. This study was the first to 

explicitly assess relationships of occupancy and detection probability to roadside and off-

road surveys for these species. 

Tracking high-priority grassland and early successional bird populations in the 

CHBCR is critical for assessing the impacts of conservation practices. Previous research 

has documented the response of various priority grassland birds to conservation practices 

within the actual area encompassed by the practice.  My study evaluated to what extent 

this response is being expressed at a broader scale within the non-forested landscapes that 

grassland birds occur in.  Overall: 

1) Land-cover characteristics were important covariates in explaining target 

species occupancy and abundance relationships; 



 

166 

 

2) The strength of the relationships between species occupancy and abundance 

and conservation practices was weak, being swamped out by other land-cover 

covariates.    

There are four potential explanations for these findings. Land-cover factors are 

more important in explaining species occupancy and abundance. Thus, landscape factors 

surrounding conservation practices could potentially reduce the effectiveness of practices 

at eliciting population responses. Conclusions could also be largely reflective of the 

relatively small amount (4-6% of points) and relatively small sizes (x ≈ 22 ha) of 

conservation practices that occur in these landscapes.  Additionally, the actual structure 

and composition of the individual practices may be contributing to a lack of a strong 

species response to conservation.   

Future conservation implementation strategies need to account for the landscape 

composition and structure first and foremost. Focal areas can be defined by utilizing 

models that identify areas on the landscape to optimize focal species probability of 

occupancy or abundance as conservation priority areas. Targeting high-probability 

occupancy areas based on land-cover variables could improve existing habitat in those 

areas. Similarly, targeting areas with a greater amount of existing conservation practices 

would create more relatively contiguous suitable habitat for target species. Lastly, 

continued use, assessment, and oversight of proper mid-contract management should 

positively affect species occupancies and abundances at large extents. When conservation 

practices are properly implemented and maintained, species abundance and density can 

be improved.  
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 Continued monitoring is paramount totracking the effectiveness of alternative 

conservation implementation strategies in the CHBCR. If adaptive conservation strategies 

are adopted for the CHBCR, then monetary resources can be allocated appropriately to 

optimize grassland and early successional bird conservation and positively affect species 

populations.  

  



 

168 

 

VITA 

Chris Lituma is from Fairless Hills, PA, though he was born in Englewood, NJ.  In 2005 

he received his B.S. degree in Biology with a concentration in Ecology from Millersville 

University of Pennsylvania. He designed an undergraduate research thesis under the 

direction of Dr. David A. Zegers, evaluating the impacts of streamside restoration on 

passerine communities. In 2009 he received his M.S. degree in Wildlife and Fisheries 

Sciences from Texas A&M University. His thesis research under the direction of Dr. 

Michael L. Morrison involved a comparison of avian assemblages between restored 

native grass fields and Bermuda grass fields in the Blackland Prairie region of east-

central Texas. He also evaluated Dickcissel nesting success between field types. In 2010, 

he accepted a research assistantship at the University of Tennessee in Knoxville to 

continue his lifelong passion of ornithological conservation research under the direction 

of Dr. David A. Buehler. In the future, he would like to teach ornithology, conservation, 

and wildlife science at a university, while continuing to conduct research 

 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2014

	Regional Assessment of the Relationships of Conservation Practices to Northern Bobwhite and Other Priority Grassland Bird Breeding Populations
	Christopher Manuel Lituma
	Recommended Citation


	Microsoft Word - 369006-convertdoc.input.357931.PyJHx.docx

