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ABSTRACT New analytical methods have been promoted for estimating the probability of detection and
density of birds from count data but few studies have compared these methods using real data. We compared
estimates of detection probability and density from distance and time-removal models and survey protocols
based on 5- or 10-min counts and outer radii of 50 or 100 m. We surveyed singing male Acadian flycatchers
(Empidonax virescens), cerulean warblers (Dendroica cerulea), Kentucky warblers (Oporornis formosus),
Louisiana waterthrushes (Parkesia motacilla), wood thrushes (Hylocichla mustelina), and worm-eating war-
blers (Helmitheros vermivorum) in bottomland and upland forest across 5 states in the Central Hardwoods
Bird Conservation Region during the breeding season in 2007 and 2008. Detection probabilities differed
between distance and time-removal models and species detectabilities were affected differently by year, forest
type, and state. Density estimates from distance models were generally higher than from time-removal
models, resulting from lower detection probabilities estimated by distance models. We found support for
individual heterogeneity (modeled as a finite mixture model) in the time-removal models and that 50-m
radius counts generated density estimates approximately twice as high as 100-m radius counts. Users should
be aware that in addition to estimating different components of detectability, density estimates derived from
distance and time-removal models can be affected by survey protocol because some count durations and plot
radii may better meet model assumptions than others. The choice of a method may not affect the use of
estimates for relative comparisons (e.g., when comparing habitats) but could affect conclusions when used to
estimate population size. We recommend careful consideration of assumptions when deciding on point-
count protocol and selection of analysis methods. � 2011 The Wildlife Society.y

KEY WORDS bottomland forest, central hardwoods, detectability, distance sampling, survey protocol, time-removal
sampling, upland forest.

Point-count surveys are a traditional and popular technique
used in avian ecology; often, data collected from these surveys
are used to estimate abundance or density of bird species
(Ralph et al. 1995, Rosenstock et al. 2002). Typically, abun-
dance is reported as an uncorrected count of individuals
detected per point and is treated as an index of abundance.
The use of counts of birds as an index has received consider-
able criticism because of the inherent assumption of constant
detection probability across time and space (Burnham 1981,
Thompson 2002). Substantial evidence exists that many
factors can affect detection probability, including time of
day and season, weather, breeding status, distance to detected
individuals, habitat type, and observer ability (reviewed in

Johnson 2008). Most monitoring efforts have relied on
design-based approaches to control factors that affect detec-
tion probabilities (Verner 1985, Ralph et al. 1995).
Researchers relying on design-based methods attempt to
minimize variation in detectability or randomize differences
in detectability to minimize bias. Despite well-standardized
methodology, most surveys are not well designed and will not
be able to account for all variation in detection probabilities,
and many factors remain beyond control such that substantial
variation can still exist in detection probability (Johnson
1995, Pendleton 1995). Important sources of variation often
overlooked and not usually controlled for in study designs
include observer ability (particularly problematic for long-
term studies) and physical and behavioral attributes of the
study species (which can affect likelihood of detection;
reviewed in Rosenstock et al. 2002).
Recent advances have made modeling detection probability

of point-count data more feasible. Several approaches have
been developed to account for detection information, includ-
ing double-observer sampling (Nichols et al. 2000), double
sampling (Bart and Earnst 2002), time-removal sampling
(Farnsworth et al. 2002), time-of-detection sampling
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(2007c), and distance sampling (Buckland et al. 2001), each
method having its own assumptions. Despite general agree-
ment that detection probability is rarely perfect or constant,
many field studies may not be able to meet assumptions to
estimate detection probability and, even if they do, models
may not perform well for certain species or survey protocols
(Alldredge et al. 2008, Johnson 2008, Nichols et al. 2009).
Beyond model assumptions, selection of a method has
implications to the count or survey protocol used in the field.
The former 2 techniques require substantially more field
work than do typical point counts; whereas the latter 3
approaches can more easily be accommodated within the
framework of standard point counts by simply collecting
time and distance data. However, the additional collection
of ancillary data can affect an observer’s ability to detect
multiple or hard-to-detect species and is highly subject to
error (Alldredge et al. 2008, Johnson 2008, Nichols et al.
2009).
Additionally, there is confusion over which of these newer

methods to use for analysis of count data to estimate detec-
tion probabilities. Each method models detection probability
based on different information associated with observations
and is best chosen by a thorough examination of species
biology, study design, and examining how well the data
meets model assumptions. Detection probability comprises
2 broad components. Availability (pa) is the probability a bird
is present and gives the appropriate cue, whether visual or
aural (Marsh and Sinclair 1989, McCallum 2005, Laake
et al. 2008). The other component of detection probability,
detectability (pd), has been termed perception bias
(Marsh and Sinclair 1989, Laake et al. 2008) and is the
probability the observer detects the bird given that the bird
is available, which can be divided into components of
conspicuousness and abundance of cues (McCallum 2005).
Double sampling and time-removal sampling are better at
estimating pa, whereas double-observer and distance
sampling are better suited to estimating pd. No current
method incorporates all components of detection probability
easily (McCallum 2005, Nichols et al. 2009). Work is under-
way using hybrids of these methods (Nichols et al. 2009),
such as including distance as a covariate in time-removal or
mark-recapture models (Alpizar-Jara and Pollock 1996),
combining time-of-detection and double observer sampling
(Stanislav et al. 2010) or mark-recapture and distance mod-
eling (Laake et al. 2008), or incorporating availability as
a divisor in distance models (Diefenbach et al. 2007, Gale
et al. 2009).
Because estimation of detection probability is new, there is

little information about how survey protocol affects detect-
ability. Several studies have explored the effect of survey
protocol on unadjusted estimates (Jones et al. 2000,
Norvell et al. 2003). Few have evaluated the effect of survey
protocol on detection probabilities, which in turn affect
density estimates. The little research that has been done
has focused on distance sampling, and conclusions showed
that count duration and maximum radius used affected
estimates (Kissling and Garton 2006, Cimprich 2009). To
our knowledge, no study has evaluated the effect of count

duration or outer radius on detection probability using time-
removal models.
We worked with partners of the Central Hardwoods

Joint Venture to implement a point-count survey targeting
Acadian flycatchers (Empidonax virescens), cerulean warblers
(Dendroica cerulea), Kentucky warblers (Oporornis formosus),
Louisiana waterthrushes (Parkesia motacilla), wood
thrushes (Hylocichla mustelina), and worm-eating warblers
(Helmitheros vermivorum) in the Central Hardwoods Bird
Conservation Region (CHBCR). These birds are priority
species for the joint venture (due to declining populations or
having a large percentage of their population within
CHBCR, Fitzgerald et al. 2003) but also represent a suite
of forest-breeding songbirds that cover a gradient of eco-
logical niches and likely vary in their song rate and volume
and height of singing perches. Our objectives were to:
1) survey density of the 6 priority species on selected sites
in the CHBCR in such a way that we could compare multiple
point-count protocols and analysis methods; 2) identify the
best distance and time-removal models for estimating
density considering forest type, year, state (as a surrogate
for observers), distance, and heterogeneity effects; and
3) compare estimates from the best models for each method
using different count durations and radii around points.

STUDY AREA

We conducted our study in forests on public lands in
Arkansas, Illinois, Kentucky, Missouri, and Tennessee
within the CHBCR (Fig. 1). The CHBCR comprised >3
million ha of rolling hills covered primarily with hardwood
forests interspersed with glades and woodlands and dissected
by deep river valleys (Fitzgerald et al. 2003). Other landforms
within the CHBCR included steep-sided ridges and hills,
karst terrain, gently rolling lowland plains, and bottomlands
along major rivers, with associated terraces and meander
scars (McNab and Avers 1994). TheMississippi River flood-
plain bisected the CHBCR between Illinois and Missouri
into 2 regions: the Ozark Highlands and Boston Mountains
to the west and the Interior Low Plateaus to the east (U.S.
North American Bird Conservation Initiative Committee
2000).

METHODS

To address objectives ancillary to this study, we considered
forested lands that represented potential habitat for cerulean
warblers. We used a Geographic Information System (GIS)
to intersect a map of forest derived from National Landcover
Data (Homer et al. 2004) with public lands in the CHBCR.
Because of the extensive forested lands in Missouri, we
further constrained sampling to within forest breaks landtype
associations within the Meramec River Hills and Current
River Hills ecological subsections (Nigh and Schroeder
2002), because this is believed to represent the best potential
cerulean warbler habitat in the state (Rosenberg et al. 2000).
We then classified forest as upland or bottomland using a
digital elevation model. Wooded bottomland forest con-
sisted of mixed hardwoods stands often with American
sycamore (Plantanus occidentalis) dominating the canopy
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along riparian edges. Oak (Quercus spp.)-hickory (Carya
spp.) forest dominated upland habitats as well as occasional
stands of mixed oaks and shortleaf pine (Pinus echinata).

Point Counts

We conducted counts at points along transects starting from
random locations along secondary and unimproved roads in
upland habitats and rivers accessible by canoes in bottomland
habitats. We located points in upland forest at 250-m inter-
vals on U-shaped transects that departed perpendicularly and
started 30–50 m from a road. Roads had a dirt surface and
very little traffic and were narrow with tree canopy overhead.
We oriented transects in bottomland forest perpendicular to
the river but transects were only 1–2 points long because
bottomlands were narrow.
We conducted counts from 23 May to 30 June 2007–2008;

from sunrise to 1000 hours; and during periods of no or low
wind, no or light precipitation, and temperatures >108C. At
each point we recorded the state, site, transect, point,
observer, date, start time, Universal Transverse Mercator
(UTM) coordinates, and weather condition (temperature,
wind speed, cloud cover, and precipitation). For each singing
male detected, we recorded the time of initial detection and
the distance and direction to the bird from the observer. We
measured distances using a Bushnell Yardage Pro laser
range-finder (Bushnell, Overland Park, KS). However, when
topography or vegetation density made use of the range-
finder difficult, we estimated distances (<10% of detections).
Primary observers were trained in distance measurements

prior to surveying by a biologist from each state (such that
observers from each state would corroborate each other).

Distance Modeling

We estimated density based on the distance to detected
individuals at points, assuming detectability decreases with
increasing distance between the observer and the detected
individual (Buckland et al. 2001). Assumptions for distance
sampling are: 1) objects at the point are always detected, 2)
objects are detected at their initial location (no movement in
response to observer or otherwise), and 3) distances are
measured accurately (Buckland et al. 2001). Distance
sampling addresses one component of detection probability,
detectability (pd). We evaluated the effect of covariates on
detectability for each species in multiple covariate distance
sampling (MCDS) engine within Program DISTANCE
(Version 6.0, www.ruwpa.st-and.ac.uk/distance/, accessed
26 Oct 2010) based on data collected at each point. We
truncated the data at the greatest 10% of recorded distances
as recommended by Buckland et al. (2001). We fit models
with half-normal key function and cosine series expansion
and hazard-rate key function with simple polynomial series
expansion, and we used model selection criteria (defined
below) to determine the best fit to the data for each species.
We hypothesized that detectability could be affected by year,
forest type, and observer. However, because we had many
observers, many of whom conducted few surveys, we eval-
uated observer effects using state as a surrogate because
observers were trained and supervised by each state.

Figure 1. Survey area (black areas) and point counts (white circles) in public forested land we used in a survey of abundance of 6 priority species in the Central
Hardwoods Bird Conservation Region (gray area), May to June 2007–2008.
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We compared support for models incorporating year, forest
type, and state as covariates evaluated singly and additively, as
well as a null model with a global detection function. We
assessed model fit with chi-square goodness-of-fit and eval-
uated model support using Akaike’s Information Criterion
adjusted for small sample sizes (AICc); the most supported
model was the model with the lowest AICc (DAICc ¼ 0).
We report DAICc for each species for each model and
detection probability for the most supported model.
Because Program DISTANCE does not allow multiple
levels of stratification, we partitioned points by forest type
to enable estimation of density by forest type and year. If year
was supported in the covariate analysis above, we estimated
density with year-level detection probabilities; otherwise, we
estimated density using a global detection function. We
compared model fit using the half-normal, hazard-rate,
and uniform key functions with the cosine, simple poly-
nomial, and hermite polynomial series expansions, respect-
ively. We estimated density (singing males/ha) for each
species by year and forest type.

Time-Removal Models

We estimated detection probability and density using a
removal model framework (Farnsworth et al. 2002) in
Program MARK (Version 5.1, www.cnr.colostate.edu/
�gwhite/mark/mark.htm, accessed 29 Jan 2010) with
Huggins closed-capture and Huggins full-heterogeneity
models (Huggins 1989). Huggins models are based on con-
ditional likelihood theory, where individuals not detected
(i.e., encounter history of 000 for 3 time intervals) are not
included in analysis. Because individuals not detected are
conditioned out of the likelihood, these models are able to
analyze data incorporating covariates. Time-removal models
estimate density based on the time interval in which an
individual is detected. Detection probability is modeled as
the decline in the number of new detections over sequential
time intervals (Farnsworth et al. 2002). Models incorporat-
ing heterogeneity allow detection to vary across groups,
typically two: those easy to detect and those difficult to
detect. Model assumptions are: 1) population of interest is
closed, 2) there is no double-counting, 3) all members of
group 1 are detected in the first interval, 4) all members of
group 2 not detected in the first interval have a constant
detection probability, and 5) for limited-radius counts,
observers accurately assign birds to the appropriate radius
(Farnsworth et al. 2002). Time-removal models address
another component of detection probability, availability
(pa). We created encounter histories by placing detections
of each species at each point in five 2-min intervals and
truncated the data to a maximum observation distance of
100 m. We first evaluated support for intercept-only models
with and without heterogeneity, then used the most sup-
ported model to build models incorporating the covariates
year, forest type, state, and distance singly and additively, as
well as a null model with no covariates. We report DAICc

(model support) and detection probability for each species for
each model.

We created encounter histories for each species based on
different survey protocols to evaluate the effect of count
duration and plot radius on density estimation. We parti-
tioned the full dataset by 2 count durations (5 min and
10 min) and 2 plot radii (50 m and 100 m). Whereas we
created the full model above by binning count data into five
2-min intervals, we binned the 5-min count (based on the
first 5 min of the survey) into five 1-min intervals. For
each of these count durations, we used a truncation radius
of 100 m or 50 m (both commonly used outer radii). For
each survey protocol, we evaluated the same model set as
above for the full model (100 m and 10 min). We report
density (singing males/ha) estimated using the most sup-
ported model for each survey protocol for each species
in both years and forest types. Model selection results
are reported for the full dataset (100-m radius 10-min
counts) (Fig. S1, available online at www.onlinelibrary.
wiley.com).

RESULTS

During 2007 and 2008, 56 observers completed 310 point
transects comprising 2,771 point counts (Table 1; Fig. 1).
The dataset included 1,246 and 1,132 point counts in upland
habitat and 97 and 296 point counts in bottomland habitat in
2007 and 2008, respectively.
Data truncation for distance models resulted in a maximum

distance of 100 m, 90 m, 100 m, 109 m, 150 m, and 100 m
for Acadian flycatchers, cerulean warblers, Kentucky war-
blers, Louisiana waterthrushes, wood thrushes, and worm-
eating warblers, respectively. Distance models fit the data
well (Fig. 2); all top models had coefficients of variation<6%
for the 4 most abundant species and <15% for the 2 least
abundant. Cerulean warbler detections appeared to be sub-
ject to heaping errors (Fig. 2), either due to distance
measurement error or movement away from the point.
Wood thrushes had a broad detection shoulder, representing
high detection probabilities to larger distances, whereas
Louisiana waterthrushes displayed a sharp decline or narrow
shoulder in detections with increasing distance (Fig. 2). We
were not able to evaluate state as a covariate for any species
using distance models because the shape function differed or
there were too few observations in some states for models to
converge. There was strong support for effects of year, forest
type, or year þ forest type for all species except cerulean
warbler. There was substantial model selection uncertainty
for cerulean warblers, probably due to a small sample size
(Table 2). However because for most species there were few
or no competing models with DAICc < 2, and if there was,
density estimates were very similar, we only present estimates
from the most-supported model.
For time-removal models, 67–94% of detections occurred

within the first 5 min and 36–75% of detections were within
50 m for all species except wood thrush, for which 21–37% of
detections occurred within 50 m. Intercept models with
heterogeneity (Mh) were supported over models without
heterogeneity for 5 species (DAICc > 3.5 for models with-
out heterogeneity) and both models received almost equal
support for 1 species (Louisiana waterthrush), so heterogen-
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eity was included in all models with covariates. Detection
probabilities for all models were generally high, resulting in
estimates almost the same as the number of detections and
narrow confidence intervals. State and forest type were
included in the top model for 5 species; year and distance
were included in the top model for 3 species (Table 2).
Because for most species there were few or no competing
models with DAICc < 2, and if there was, density estimates
were similar, we only present estimates from the most sup-
ported model and estimates are conditional on the best
model.
Detection probabilities varied widely between species and

methods, ranging from 0.08 for Louisiana waterthrush to
approximately 1.00 for several species (Fig. 3). Distance
models produced lower detection probabilities for all species.
Louisiana waterthrushes, based on the sharp decline of
detections with increasing distance, had a very low detection
probability particularly for bottomland forest detections.
On average, distance models produced the highest density

estimates, but they were similar to estimates from time-
removal models based on a 50-m radius. Time-removal
models based on 50-m radius estimated densities about twice
as great as models based on 100-m radius for 5 of 6 species
(Fig. 4). Density estimates from time-removal models dif-
fered more between 50-m and 100-m plot radii than between
5-min and 10-min counts. We generally detected about
twice as many individuals within 100 m than within 50 m
for all species (1.56–2.74, except Louisiana waterthrush [0.3–
2.1] and wood thrush [2.8–4.8]), but density was often twice
as high for the smaller plot. Additionally, density estimates
averaged 27% (range �9.0–97%) higher for 10-min counts
than for 5-min counts. Differences in density between plot
radii were mostly the result of differences in the number of
detections and area sampled because detection probabilities
were similarly high for most survey protocols. There was a
tendency for confidence limits for density estimates from
time-removal models to be wider for surveys based on 50-m
radii than 100-m radii (Fig. 4).

DISCUSSION

We compared density estimates derived from the most sup-
ported distance and time-removal models using a standar-
dized design. Comparison of estimates from different models
can be of limited value when the true density is unknown.
However, given limited application of time-removal models
in large-scale survey efforts, we believe our application and
comparison of alternative survey protocols is informative.We
used a few target birds, as recommended by Alldredge et al.
(2008) and Nichols et al. (2009), where we could use col-
lected data in both distance and time-removal models. Based
on measures such as model fit or support and the precision of
estimates, we successfully applied these models to estimate
bird densities. However, the estimates varied, sometimes
greatly, when we used different subsets of the data repre-
senting different survey protocols in the models.
Our hypothesis that detection probability varied by year

and forest type was supported in both modeling approaches.
These results are similar to Norvell et al. (2003), who foundT
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detection probabilities varied widely across years. Whereas
Norvell et al. (2003) did not include a habitat type as a
variable, they noted that their sampling may have failed to
address habitat-specific detection probabilities. Year is not a
very informative variable and is often a proxy for unexplained
variation. Possible explanations for a year effect include
hiring more skilled observers 1 yr than the other, number
of observers used each year, changes in weather patterns, and
differences in species’ detectability based on mating and
nesting status (birds may have experienced higher nest pre-

dation 1 yr leading to differences in nesting phenology and
song rates). We think that detectability varied by forest type
due to terrain and topography and by species-specific habitat
preferences and use of space.
Our observer surrogate was supported in time-removal

models for 5 of 6 species. Although states represented groups
of observers trained together, an observer effect may have
been obscured by mixing it with another potential source of
variation (states may have acted as groups for more than just
observers). However, we have no a priori reason to speculate

Figure 2. Detection-probability histograms from top distancemodels for Acadian flycatcher, cerulean warbler, Kentuckywarbler, Louisiana waterthrush, wood
thrush, and worm-eating warbler detected in the Central Hardwoods Bird Conservation Region during early summer 2007–2008. We truncated detections at
the largest 10% of distances for each species.

Table 2. Number of parameters (K) and model support (difference in Akaike’s Information Criteria from the top model [DAICc]) using distance and time-
removal models for 6 priority species detected during point counts in the Central Hardwoods Bird Conservation Region fromMay to June 2007 and 2008.We
evaluated the effect of year and forest type (singly and additively) in distance models, and year, forest type, state, and distance (singly and additively) in time-
removal models. We based models on 10-min counts with the largest 10% of distances truncated for distance models and with a 100-m fixed radius for time-
removal models. The null model used a global detection function.

K

DAICc

Acadian
flycatcher

Cerulean
warbler

Kentucky
warbler

Louisiana
waterthrush

Wood
thrush

Worm-eating
warbler

Distance
Null 2 13.53 0.00 10.61 4.31 27.09 25.88
Year 4 6.75 1.21 10.30 6.78 1.73 0.00
Forest type 4 0.00 1.14 12.74 0.00 19.96 18.10
Year þ forest type 5 1.45 3.09 0.00 2.22 0.00 1.24

Time-removala

Null 3 64.02 5.46 30.10 19.01 24.81 54.64
Year 4 24.70 7.43 22.48 18.55 15.54 11.74
Forest type 4 61.05 6.89 31.95 12.18 23.05 47.45
State 7 20.69 4.00 2.93 16.90 21.06 18.00
Distance 4 52.30 4.88 31.99 7.61 23.32 55.25
Year þ forest type 5 23.08 8.90 20.79 12.83 17.20 9.79
Year þ state 8 19.95 5.57 0.00 18.92 10.63 5.19
Year þ distance 5 17.09 6.87 24.34 7.22 15.58 13.34
Forest type þ state 8 18.47 3.78 6.11 14.25 22.43 0.00
Forest type þ distance 5 49.32 6.38 32.29 0.52 21.81 48.15
State þ distance 8 16.50 1.75 2.49 5.77 20.47 16.94
Year þ forest type þ state 9 0.00 5.77 4.24 14.37 4.53 1.46
Year þ forest type þ distance 6 14.68 8.40 21.91 0.00 17.46 10.42
Year þ state þ distance 9 12.65 2.72 0.01 7.34 11.62 5.56
Forest type þ state þ distance 9 1.71 0.00 6.69 7.48 0.00 0.99
Year þ forest type þ state þ distance 10 14.50 2.01 4.58 4.50 1.43 3.36

a All models include heterogeneity.
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that detectability differed by state for any other reason (forest
type, terrain, weather). Other studies have provided more
direct evidence of observer effects (Farnsworth et al. 2002,
Norvell et al. 2003, Simons et al. 2007, Gale et al. 2009) and
observer bias is an issue that will continue to plague count-
based surveys, especially large-scale monitoring projects.
Small-scale studies can more easily control for observer bias.
Large-scale studies should attempt to implement a more
rigorous system to control for and identify sources of observer
bias, including longer training periods and testing. Design-
based methods such as randomizing observers can minimize
bias but do not eliminate variability due to observers. Surveys
should control for as many sources of variation in detection
probability as possible, but it is unlikely all sources of vari-
ation can be accounted for in the design.
Distance models fit the data well and detection probabil-

ities ranged from 0.08 to 0.66. Thompson and La Sorte
(2008) and Norvell et al. (2003) found similar detection
probabilities for songbirds from distance models.
Simulations show distance models perform well when all
assumptions are met (Efford and Dawson 2009). However,
meeting model assumptions in the field is difficult and errors
are pervasive in distance measurements (Alldredge et al.
2007a, 2008; Simons et al. 2007; Johnson 2008). Despite
this, ignoring the effects of distance on detectability certainly
leads to biased estimates of detection probability and there-
fore to density (Efford and Dawson 2009). Conclusions from
real data comparing count data to known populations are
conflicting. Cimprich (2009) concluded black-capped vireo
(Vireo atricapilla) density was overestimated using distance
sampling compared to a known, color-marked population.
Gale et al. (2009) concluded density from count data was
biased low for 4 species and high for 1 compared with known
abundance of 8 tropical forest birds estimated with distance
sampling and found incorporating a measure of availability
did not improve accuracy of estimates.
Time-removal models with heterogeneity were supported

over those without, similar to Farnsworth et al. (2002).

Including covariates removed some of the heterogeneity,
but not all, as evidenced by the higher density within
50 m than within 100 m. Unmodeled heterogeneity in
mark-recapture data, such as time-removal models, is a
well-documented problem in the line-transect literature
and may result in negative bias greater than that resulting
from violation of failing to detect all individuals on the line or
point using distance models (Laake et al. 2008). Controlling
for and modeling as many sources of variation can reduce
heterogeneity-related bias, but all sources are unlikely to be
accounted for (Laake 1999, Borchers et al. 2006).
Time-removal models produced estimates of detection

probabilities (0.62–1.00) that were greater on average than
distance models and similar to Farnsworth et al. (2002) and
Thompson and La Sorte (2008). These results suggested
availability is high, particularly at closer distances. Dawson
et al. (1995) estimated the probability of detecting a bird
given it was known to be present at a point ranged from 47%
to 85% within the first 5 min and 66% to 92% within the first
10 min of a 20-min count. Diefenbach et al. (2007) esti-
mated availability separately for 2 grassland songbirds and
found availability to be substantially lower than 1 (0.50 and
0.21, respectively, for a 10-min aural count).
Time-removal methods model the decline in new detec-

tions across time, so it is unsurprising that detection prob-
abilities were high given that our target birds have high
singing frequencies and small territories or loud vocaliza-
tions. We expect that detection probabilities would be lower
for species with lower singing frequencies or larger territo-
ries. Using time to estimate detection probability has its own
shortcomings, as experimental counts have shown observers
often double count individuals, record detections in the
wrong time interval, and count detections from outside
the outer radius as in Alldredge et al. (2007b). Bias due to
spatial heterogeneity in detection probability can be reduced
by incorporating distance to detected birds in time-removal
models (Efford and Dawson 2009). In our study, distance
received some support as a covariate in time-removal models

Figure 3. Estimated detection probabilities based on most supported covariates in distance and time-removal models by forest type, state, and year from point-
count surveys in the Central Hardwoods Bird Conservation Region, 2007–2008; scales vary between graphs.We truncated distance models at 10% of the largest
distances for each species.We based detection probabilities for time-removal models on 10-min counts and 100-m fixed radius.We did not conduct bottomland
surveys in Tennessee.
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Figure 4. Density estimates and 95% confidence intervals from top distance model and time-removal models based on different survey protocols (100 m and
10 min, 100 m and 5 min, 50 m and 10 min, and 50 m and 5 min) in bottomland (left) and upland (right) forests in 2007 (white bars) and 2008 (hatched bars).
Scales vary among figures.
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for all species. Examination of simulated counts demonstrate
that if detection probabilities are high, then population
estimates show little bias using numerous methods to esti-
mate detection probability, but large bias exists when hetero-
geneity related to distance exists (Efford and Dawson 2009).
Our evaluation of survey protocols highlights the import-

ance of count duration and plot radius to density estimation
because they define the population of interest (more detec-
tions are expected over a longer duration and an increased
area). Cimprich (2009) concluded a 3-min count was more
accurate at estimating density of black-capped vireos than
were 5-min or 6-min counts and found that longer counts
produced higher density estimates. Lee and Marsden (2008)
also showed a positive association between density estimates
and count duration. Such results suggest individuals may
have been double-counted or that movement of birds
occurred during the survey, both violations of the model
assumptions. We found a similar trend with higher density
estimates for 10-min counts than for 5-min counts. Jones
et al. (2000) found observers overestimated density of cer-
ulean warblers within a 50-m radius and underestimated
density at 100-m or unlimited radius (on unadjusted counts)
compared to a known population. Similarly, Simons et al.
(2007) demonstrated observers overestimated density within
50 m and underestimated density in unlimited radius counts
using experimental surveys. Our density estimates were often
twice as high for the 50-m plot as for the 100-m plot.
Differences in our estimates between the 2 plot radii suggests
either errors in distance estimation that were dependent on
distance or that our models did not adequately capture spatial
heterogeneity, even though many included distance as a
covariate.
The appropriate design to accurately estimate density will

likely require preliminary investigation to establish protocol
criteria such as count duration and maximum radius to use
(Barker et al. 1993, Jones et al. 2000, Cimprich 2009). We
included only detections of singing males in our analysis
because we conducted surveys in forested terrain where we
were unlikely to detect individuals by sight except at very
close distances. We also focused on singing males to min-
imize heterogeneity in detectability resulting from differ-
ences in detectability among male and female birds. Studies
that combine visual and auditory detections may arrive at
different conclusions. Our investigation highlights the dis-
crepancy between density estimates using different survey
protocols and the potential problems of comparing estimates
based on different protocols or models. Our study represents
a realistic dataset collected from multiple observers across a
large geographic area with varying levels of training in species
identification, distance estimation, and general field tech-
niques. Even if we could better standardize all the above,
there still exist differences in observers’ hearing ability and
terrain, as well as individual species’ biology (song rate,
singing volume).
We agree with concerns raised by Johnson (2008)

and Efford and Dawson (2009) concerning the reliability
of methods used to estimate absolute abundance.
Nevertheless we could fit distance and time-removal models

to typical point count data, and these methods represent one
way to address effects of covariates on detection probability.
Based on our findings, we recommend using time-removal
models for species with a constant singing rate, and do not
recommend using this method for birds that sing in bouts.
Distance sampling may be best applied to studies conducted
in more open habitats, where observations are composed of
both visual and auditory detections and distance estimates are
more accurate, and for species that use space randomly. Using
a combination of mark-recapture and distance sampling, as
developed by Laake (1999) and Borchers et al. (2006), to
estimate each component of the detection probability shows
promise but needs to be evaluated with known abundance.

MANAGEMENT IMPLICATIONS

We recommend that detection probability be addressed in
some manner, whether by design-based methods (Johnson
2008), statistical or model-based methods that consider
factors affecting detection probability (Link and Sauer
1998, Johnson 2008, Thompson and La Sorte 2008), or
modeling approaches that attempt to estimate detection
probability. Given that density estimates can vary based
on the survey protocol and method used to estimate density,
investigators and managers should be careful when compar-
ing estimates. Relative relationships of species’ density
among forest types and years were mostly consistent across
methods and survey protocols, so these models may still
provide an option for addressing factors affecting detectabil-
ity when interested in relative comparisons among treat-
ments or habitats. When choosing a modeling approach
and survey protocol we suggest investigators and managers
consider species biology (e.g., territory size, vocal range,
singing rates) and model assumptions.
Surveys that collect exact time and distance data offer

maximum flexibility for analysis, allowing data to be parti-
tioned to evaluate different approaches based on species
biology, habitat characteristics, and additional covariate data
such as observers. Finally, we believe that targeting a few
species of interest helps eliminate errors and allows time to
collect data required for each detection during the count.
Given the large effect that the modeling method and survey
protocol had on density estimates, we suggest investigators
collect data that allow evaluation of multiple approaches
and their assumptions. Additionally, we recommend inves-
tigators report both adjusted and unadjusted count data.
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